

Global Research Landscape of Artificial Intelligence in Urology: A Systematic Analysis of Emerging Trends, Clinical Impact, and Collaborative Networks (1971–2024)

Kasra Hatampour^{1#}, Sina Baghi Keshtan^{2#}, Ghazal Mohammadi³, Hassan Akbariakhaky³, Ali Faryabi³, Hossein Aazami³, Mohammad Reza Fattahi⁴, Farhad Seif⁵, Hojat Dehghanbanadaki^{3*}

Received: 6 Mar 2025

Published: 15 Dec 2025

Abstract

Background: Despite the rapid integration of artificial intelligence (AI) in urological practice, a comprehensive understanding of research evolution and impact patterns remains unexplored. This analysis provides a systematic examination of its scientific development and future potential.

Methods: We conducted a comprehensive analysis of AI-related urological publications through October 2024 using the Scopus database. The study incorporated English-language original articles and reviews, utilizing VOSviewer, GraphPad Prism, and Data Wrapper for analysis and visualization.

Results: Our investigation encompassed 5755 publications, comprising 5109 original articles and 646 reviews, with 63.9% being open access. The field demonstrated exponential growth from a single publication in 1971 to 1337 publications in 2024, garnering 112,583 citations. The past decade has witnessed the emergence of the most influential articles, particularly those focusing on deep learning (DL) applications in urological cancer detection. The USA-led global contributions (31.1%), followed by China (23.7%) and India (8.2%). "Scientific Reports" emerged as the leading journal with 171 publications. Titles and abstracts analysis revealed key focuses on DL in imaging (n = 1067), chronic kidney disease (n = 801), and advanced DL methodologies (n = 794). The keyword analysis identified "machine learning" as the dominant theme (1331 occurrences), with "prostate cancer" (955) and "deep learning" (838) following closely. Contemporary trends show significant shifts toward ChatGPT applications, pharmacovigilance, and AI-assisted surgical planning. In terms of international collaboration, the USA demonstrated the strongest network with a link strength of 1543.

Conclusion: This study traces AI's evolution in urology, from basic ML to advanced clinical tools, with particular advancement in radiomics, imaging, and biomarker analysis. Successful future implementation necessitates addressing ethical considerations, technical hurdles, and practical challenges while maintaining focus on patient safety and equitable healthcare access.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Urology, Prostate Cancer, Bladder Cancer, Trend Analysis, Bibliometric, Scientometric

Conflicts of Interest: None declared

Funding: None

*This work has been published under CC BY-NC-SA 4.0 license.

Copyright © Iran University of Medical Sciences

Corresponding author: Dr Hojat Dehghanbanadaki, dehghan.hojatg@yahoo.com

1. Department of General Surgery, Loghman Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2. Birjand University of Medical Sciences, Birjand, Iran
3. Tehran University of Medical Sciences, Tehran, Iran
4. Student Research Committee, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5. Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran

↑What is “already known” in this topic:

Artificial intelligence (AI) applications are increasingly being integrated into urological practice across various domains, including imaging analysis, diagnostics, and treatment planning. Several studies have examined specific AI applications in urology, but a comprehensive understanding of the overall research landscape and evolution remains limited.

→What this article adds:

This bibliometric analysis provides the first comprehensive overview (1971–2024) of AI research trends in urology, identifying key contributors, emerging focus areas, and collaboration networks. It reveals the evolution across three distinct time periods, showing the shift from basic neural networks to sophisticated applications in radiomics, pharmacovigilance, and robotics. The study highlights emerging areas, including ChatGPT applications, FAERS, dose prediction, and AI-assisted surgical planning, while mapping the transition from fundamental machine learning (ML) to advanced clinical tools in imaging analysis, biomarker identification, and chronic kidney disease management, offering valuable insights into the current state and future directions of AI in urological practice.

Cite this article as: Hatampour K, Baghi Keshtan S, Mohammadi G, Akbariakhy H, Faryabi A, Aazami H, Fattah MR, Seif F, Dehghanbanadaki H. Global Research Landscape of Artificial Intelligence in Urology: A Systematic Analysis of Emerging Trends, Clinical Impact, and Collaborative Networks (1971–2024). *Med J Islam Repub Iran*. 2025 (15 Dec);39:156. <https://doi.org/10.47176/mjiri.39.156>

Introduction

Urology, a medical specialty addressing urinary tract and male reproductive disorders, encompasses diverse conditions from infections to urological cancers, significantly impacting healthcare outcomes (1, 2). Artificial intelligence (AI) is increasingly transforming healthcare, with urology emerging as a particularly promising field for AI applications in diagnostic imaging, treatment planning, and surgical guidance (3). AI algorithms can analyze imaging data to detect malignancies more accurately than traditional methods, aiding therapeutic decisions and predicting surgical outcomes effectively (4, 5). Machine learning (ML) and deep learning (DL) are revolutionizing urology by enabling personalized treatment plans that optimize outcomes for various urological conditions (6).

Bibliometric analysis provides a quantitative framework for evaluating scientific literature, enabling researchers to map research evolution, citation patterns, and scholarly collaborations (7, 8). In the context of urology and AI, such analyses can illuminate technological integration, identify key research contributions, and reveal critical knowledge gaps. Existing reviews have primarily focused on specific urological conditions or individual AI technologies, creating fragmented insights across the field. Previous studies have presented conflicting perspectives on the clinical readiness of AI applications in different urological domains, while comprehensive mapping of research collaboration patterns remains unexplored.

Despite the growing interest in AI applications for urological conditions, comprehensive studies covering the intersection of all urological diseases with AI are lacking. This bibliometric analysis addresses these gaps by providing the first comprehensive quantitative synthesis across all urological subspecialties, resolving conflicting findings about research maturity, and identifying collaboration opportunities. Therefore, this study aims to conduct an extensive bibliometric analysis, to identify trends and influential works, and to guide future research, ultimately enhancing the understanding of AI's role in urology.

Methods

Search Strategy and Data Sources

The present investigation employed Scopus as the principal bibliometric database, owing to its established advantages in academic document indexing and citation analysis capabilities. The database selection was informed by several critical factors, including its extensive coverage of peer-reviewed publications, sophisticated citation monitoring systems, and comprehensive bibliometric data extraction features (9). A systematic search protocol was implemented on October 14, 2024, which incorporated the complete temporal span of the database from its establishment. The search methodology incorporated an extensive array of standardized Medical Subject Headings (MeSH) and field-specific terminology pertaining to uro-

logical disorders and related clinical entities. The search methodology incorporated an extensive array of standardized Medical Subject Headings (MeSH) and field-specific terminology related to urological disorders and associated clinical entities. To ensure comprehensive coverage, the search strategy encompassed multiple linguistic variations, synonyms, and alternative spellings of key terms. The complete search algorithm and Boolean operators utilized in this investigation were documented in detail within the [Appendix](#). To ensure methodological rigor and maintain analytical consistency, the investigation parameters were confined to peer-reviewed publications in English, explicitly focusing on original research articles and reviews while excluding other publication categories and non-English manuscripts.

Data Collection and Processing

Data extraction proceeded in two phases. First, we exported the complete dataset in CSV format covering the entire timespan from inception to the search date. To investigate the temporal evolution of author keywords and identify emerging research themes, the timeline was divided into three periods: 1971-2000 (comprising 12 years of actual publications within this timeframe), 2001-2012, and 2013-2024. This division allows for a detailed view of trends across distinct eras.

The bibliometric data, exported in CSV format, included details such as document titles, authors, affiliations, keywords, publication years, document types, citations, sources, and abstracts.

Analysis Methods and Visualization Techniques

Our analytical approach combined multiple bibliometric techniques and visualization methods. The bibliometric data underwent thorough processing and analysis using Microsoft Excel for primary data management. We analyzed citation counts, leading authors, institutions, countries, journals, and influential publications. Annual publication and citation trends were visualized with line graphs using GraphPad Prism (Version 9.5.1). For network analysis, we employed VOSviewer (version 1.6.20) (10) to map the relationships between terms, author keywords, countries, authors, and sources. In the VOSviewer analyses, we implemented specific occurrence thresholds for various network analyses, including co-authorship networks, country collaborations, keyword co-occurrences, and bibliographic coupling. These thresholds were carefully determined through iterative testing to achieve an optimal balance between comprehensive representation and analytical clarity.

Using these parameters, we generated three types of visualizations: network, overlay, and density. Network visualizations elucidated various bibliometric relationships, including international country collaborations, au-

thor co-authorship networks, keyword co-occurrences, and term co-occurrences. The spatial arrangement of elements reflected their interconnectedness, with proximal items signifying stronger relationships. Element significance was denoted by node and label size, while inter-node connections represented relationship strength. A clustering algorithm categorized related items, assigning distinct colors to different clusters based on their network associations. To visualize temporal patterns in research topics, we utilized VOSviewer's overlay visualization feature for co-occurring author keywords. This technique applied a color gradient to the network, with colors ranging from blue (earlier publications) to yellow (more recent publications). This approach allowed us to observe the distribution of research topics over time in the field of urology and AI. In the visualization, the node size represents the frequency of each keyword, and the color indicates the average publication year associated with that keyword. Density visualizations were employed to analyze bibliographic coupling among journals and the temporal evolution of research topics. A rainbow density map elucidated areas of strong bibliographic connections between journals. To examine the progression of research themes, item density visualizations were generated for author keywords across three distinct periods. In these visualizations, the juxtaposition of cooler (blue) and warmer (yellow) color regions indicates the emergence of novel research areas alongside established topics, offering insights into the dynamic landscape of urology and AI research.

Lastly, the geographical distribution of research contributions was illustrated using Data Wrapper, providing a comprehensive view of global research patterns.

Results

Publication Characteristics and Subject Area

In this bibliometric analysis, 8,284 records were initially retrieved, with 5755 relevant publications selected after excluding nonoriginal, non-review, and non-English language articles. Among these, 5109 (88.7%) were original research articles, while 646 (11.3%) were review papers. A significant portion of the publications, 3670 (63.9%), were open access, highlighting the trend of increasing accessibility to global research. The international research output in this field has been published across 21 different subject areas. The subject areas of publications are as follows: Medicine (n = 3763), Biochemistry, Genetics and Molecular Biology (n = 1480), Computer Science (n = 1204), Engineering (n = 760), Health Professions (n = 365), Multidisciplinary (n = 305), Mathematics (n = 276), Physics and Astronomy (n = 266), Chemistry (n = 253), Materials Science (n = 208), Chemical Engineering (n = 184), Pharmacology, Toxicology and Pharmaceutics (n = 148), Immunology and Microbiology (n = 147), Neuroscience (n = 97), Nursing (n = 77), Agricultural and Biological Sciences (n = 69), Environmental Science (n = 66), Decision Sciences (n = 55), Business, Management and Accounting (n = 38), Social Sciences (n = 33), Energy (n = 15), Earth and Planetary Sciences (n = 14), Arts and Humanities (n = 11), Veterinary (n = 11), Psychology (n =

9), Dentistry (n = 8), Economics, Econometrics and Finance (n = 3).

Annual Publication Trends

The analysis of publication trends over the years reveals a clear upward trajectory in the number of articles published. Starting with just one publication in 1971, there was steady but slow growth in subsequent years, followed by a remarkable surge beginning in the late 2010s. This increase is particularly pronounced in recent years: from 478 publications in 2020, rising to 675 in 2021, and further to 897 in 2022. This trend continued with 1202 publications in 2023 and reached 1,337 in 2024. This significant growth, as illustrated in [Figure 1 a](#), underscores the escalating interest in the field over the past few years.

Annual Citation Trends

The cumulative citations for these works amounted to 112,583, indicating a substantial impact of this body of research on the scientific community. Initially sparse in earlier years, citations surged to 7597 in 2020, rose sharply to 12,971 in 2021, and further increased to 18,091 in 2022. In 2023, citations reached 24,315, followed by an additional increase to 25,877 in 2024, showcasing the growing impact and relevance of research within this domain ([Figure 1 b](#)).

Most Influential Publications

The analysis of the most cited articles indicates that the majority of these publications have emerged within the last decade, highlighting the increasing integration of AI in medical applications. The leading article is by Campanella et al (2019), titled "Clinical-grade computational pathology using weakly supervised DL on whole slide images," which has garnered 1398 citations, averaging 279.6 citations per year. This study presents an AI system capable of analyzing pathology slides for cancer detection without the need for manual annotations (11). Following closely is Hamet et al (2017) with their review article "AI in medicine," which has received 1308 citations (186.8 average citations per year). This review discusses various AI applications in medicine, focusing on both virtual systems—such as medical informatics and decision support—and physical systems like surgical robots and nanorobots (12). The third most cited article is "Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men" by Adam et al (2002). This research has been cited 877 times (39.8 average citations per year) and utilizes AI and mass spectrometry to identify protein patterns in blood serum for early prostate cancer detection (13). The remaining articles in the top ten list provide insights into AI applications in urology, as shown in [Table 1](#). Analysis reveals a strong focus on DL and neural networks, particularly in pathology image analysis and automated diagnostics, highlighting the field's shift toward advanced ML architectures. The Lancet Oncology appears multiple times, with notable studies by Bulten et al (14) and Strom et al (15), on AI-based automated Gleason grading for prostate cancer.

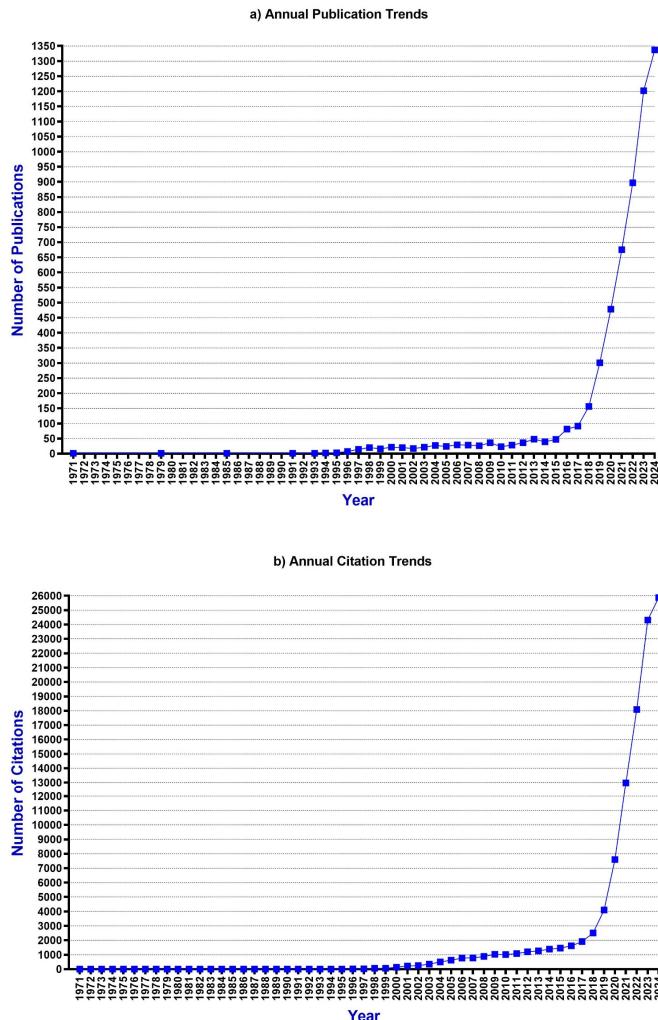


Figure 1. Annual trend in published studies (a) and citations (b) on urology and AI

Top Countries, Geographic Distributions, and International Collaborations

The analysis of countries with the highest contributions highlights significant global engagement. The United States of America (USA) leads with 1792 publications (31.1%), followed by China with 1,365 (23.7%) and India with 476 (8.2%). Together, these three countries account for 63% of all publications. The information on the top ten contributing countries is presented in Table 2. The geographical distribution map in Figure 2 a illustrates that North America and East Asia are prominent regions, with the USA, China, and India leading in contributions. European countries also demonstrate strong participation, while Australia contributes significantly as well. In South America, Brazil, Chile, and Colombia are notable contributors in this field. However, very few countries from Africa have participated in this area, with Egypt, South Africa, Nigeria, and Ethiopia representing the most active contributors from the continent. In contrast, there is noticeable participation among countries in the Middle East, indi-

cating some level of engagement in research related to urology and AI. In terms of co-contribution among countries, the analysis identified 57 countries that met the threshold of at least 10 documents published on this topic. The total link strength for these collaborative efforts reached 5594, illustrating significant international cooperation in research related to urology and AI. The USA led with a link strength of 1543, followed by the UK (n = 741), Germany (n = 592), and Italy (n = 562). China (n = 530), Canada (n = 514), the Netherlands (n = 423), Australia (n = 401), France (n = 383), and Spain (n = 359) also showed notable contributions (Figure 2 b).

Influential Journals and Bibliographic Coupling Analysis

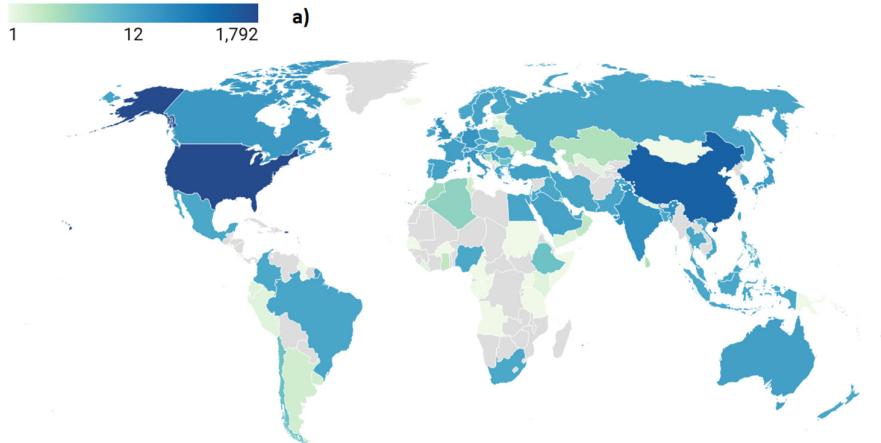
Among the top journals in this bibliometric analysis, *Scientific Reports* led with 171 contributions, accounting for 2.9% of total publications. *Cancers* followed with 123 publications (2.1%), and *Frontiers in Oncology* contributed 110 publications (1.9%). While these journals lead in publication count, their combined contributions represent

Table 1. The 10 Most Cited Articles in AI and Urology Studies

#	Authors	Year	Article Title	AI Approach	No. of Citations	Average Citations per Year	Article Type	Journal Title	CiteScore [*] 2023	IF [*] 2023
1	Campanella et al	2019	Clinical-grade computational pathology using weakly supervised deep learning on whole slide images	AI system for analysis of pathology slides without manual annotations	1398	279.6	Article	Nature Medicine	100.9	58.7
2	Hamet et al	2017	Artificial intelligence in medicine	Overview of AI applications in medicine: virtual and physical systems	1308	186.8	Review	Metabolism: Clinical and Experimental Cancer Research	18.9	10.9
3	Adam et al	2002	Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men	Using AI and mass spectrometry to identify protein patterns in blood serum for early prostate cancer detection	877	39.8	Article	Metabolism: Clinical and Experimental Cancer Research	16.1	12.5
4	Litjens et al	2016	Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis	Deep learning application to automate cancer detection in pathology slides, focusing on prostate cancer and breast cancer metastasis	793	99.1	Article	Scientific Reports	7.5	3.8
5	Lu et al	2021	Data-efficient and weakly supervised computational pathology on whole-slide images	Development of a data-efficient AI system (CLAM) that learns to analyze pathology slides using only basic labels	694	231.3	Article	Nature Biomedical Engineering	45.3	27.7
6	Bulten et al	2020	Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study	Development and validation of an AI system for automated Gleason grading of prostate biopsies	419	104.7	Article	The Lancet Oncology	62.1	41.6
7	Strom et al	2020	Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study	AI system development for automated prostate cancer detection and Gleason grading with expert-level accuracy	374	93.5	Article	The Lancet Oncology	62.1	41.6
8	Goodacre et al	1998	Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks	Using AI neural networks with spectroscopic methods for rapid bacterial identification	358	13.7	Article	Microbiology	4.6	2.6
9	Yipeng et al	2018	Weakly-supervised convolutional neural networks for multimodal image registration	AI-based system for aligning multimodal medical images using anatomical labels	329	54.8	Original	Medical Image Analysis	22.1	10.7
10	Goldenberg S.L et al	2019	A new era: artificial intelligence and machine learning in prostate cancer	Overview of AI applications in prostate cancer management	316	63.2	Review	Nature Reviews Urology	12.5	12.1

* CiteScore: A journal-level metric calculated by dividing the total number of citations received by documents published in a journal over a four-year period by the total number of citable documents (articles, reviews, conference papers, book chapters, and data papers) published in that same four-year period, as reported by Scopus. IF2023: Journal Impact Factor for 2023, calculated by dividing the total number of citations received in 2023 by articles published in the journal during the two preceding years (2021-2022) by the total number of citable articles published in those same two years, as reported by C

only a small fraction of the total, highlighting the diversity of other journals contributing to the literature. The complete list of the top journals and their respective publication counts is presented in **Table 2**. In our bibliometric analysis of journal bibliographic coupling, we considered sources with a minimum of 10 documents, resulting in a total of 116 sources meeting this threshold from an initial pool of 1550. The analysis revealed significant link strengths among various journals, indicating their interconnectedness based on mutual citations. The journal Cancers exhibited the highest total link strength of 33,273, with 123 documents and 1,234 citations, positioning it prominently within the network of related literature. Fol-


lowing closely is European Radiology, which has a total link strength of 22,274 from 69 documents and 1,936 citations. Scientific Reports ranked third with a total link strength of 22,080, comprising 171 papers and 4,581 citations. These journals demonstrate a high degree of bibliographic coupling, suggesting they share substantial subject matter in common. The full details of the top journals and their respective link strengths are presented in **Table 3**.

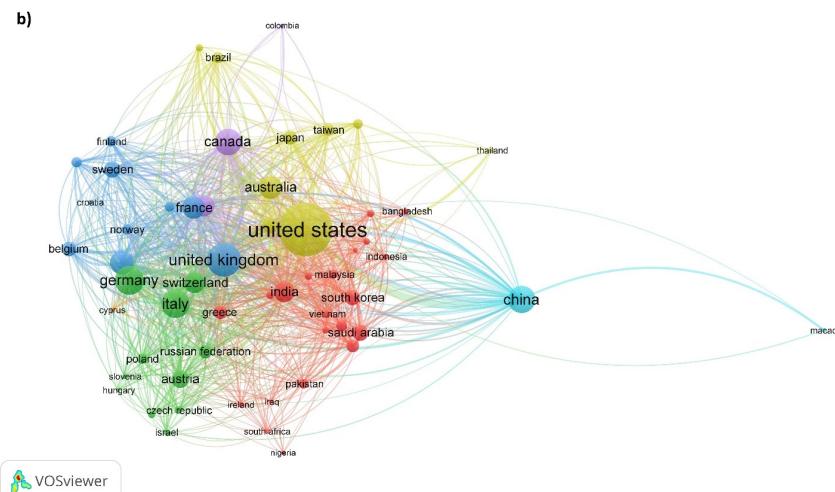
The rainbow density map in **Figure 3** illustrates bibliographic coupling among journals, using color variations to represent the strength of connections or the number of shared references between them. Journals that exhibit a higher density of connections with other journals—

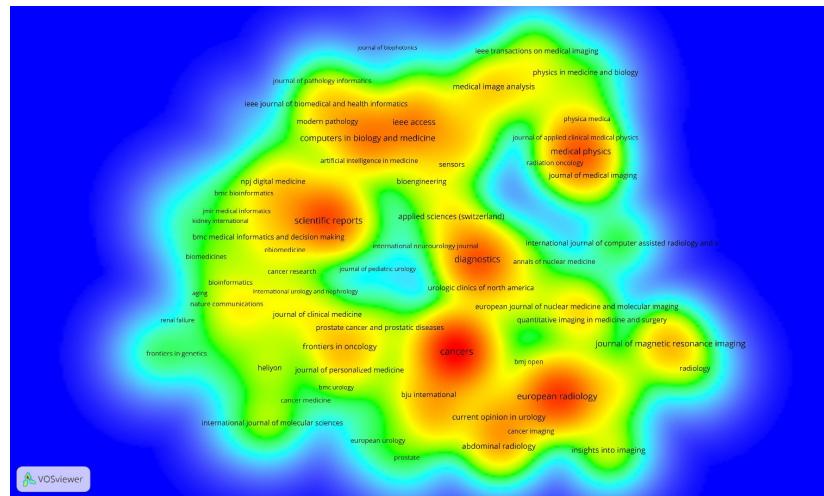
Table 2. Top 10 Countries, Journals and Authors in AI and Urology Studies

No.	Country	NP* (%)	Journal	NP (%)	Author	NP (%)
1	United States	1792 (31.1)	Scientific Reports	171 (2.9)	Turkay B	52 (0.9)
2	China	1365 (23.7)	Cancers	123 (2.1)	Somani B.K	27 (0.4)
3	India	476 (8.2)	Frontiers in Oncology	110 (1.9)	Brooks J.D	25 (0.4)
4	United Kingdom	436 (7.5)	Medical Physics	97 (1.6)	Madabhushi A	25 (0.4)
5	Germany	365 (6.3)	Diagnostics	83 (1.4)	Edenbrandt L	20 (0.3)
6	Italy	328 (5.6)	European Radiology	69 (1.1)	Checucci E	19 (0.3)
7	Canada	321 (5.5)	Computers in Biology and Medicine	68 (1.1)	Liu T	19 (0.3)
8	South Korea	247 (4.2)	IEEE Access	66 (1.1)	Naik N	19 (0.3)
9	Netherlands	215 (3.7)	Plos One	62 (1.0)	Stephan C	19 (0.3)
10	Japan	211 (3.6)	Journal of Urology	53 (0.9)	Abolmaesumi P	18 (0.3)

NP: Number of Publications

Created with Datawrapper




Figure 2. Global distribution (a) and collaboration network among countries (b) in urology and AI research. The node sizes correspond to the total link strength of each country, while the thickness of the connections indicates the link strength between countries, highlighting the leading role of the USA and notable contributions from other nations.

meaning they have cited more common articles—are typically represented in warmer colors like yellow and red. In contrast, journals with fewer connections are shown in cooler colors like blue or green. The proximity of journal names on the map signifies the degree of similarity or bibliographic connections between them. Journals that are closer together have cited more common articles or have

been referenced by similar articles, while greater distances indicate weaker or fewer connections. *Scientific Reports* and *PLOS One* demonstrate a close relationship, reflecting their shared focus and frequent mutual citations. Similarly, the *European Journal of Nuclear Medicine and Molecular Imaging* is closely linked with *Quantitative Imaging in Medicine and Surgery*. At the same time, *Computers in*

Table 3. The Top 10 Journals with the Strongest Bibliographic Coupling Relations in AI and Urology Studies

No.	Journal	Cluster	Total link strength	Documents	Citations
1	Cancers	3	33273	123	1234
2	European Radiology	3	22274	69	1936
3	Scientific Reports	1	22080	171	4581
4	Diagnostics	3	20911	83	1189
5	Medical Physics	5	17040	97	3047
6	IEEE Access	2	12805	66	1530
7	Journal of Magnetic Resonance Imaging	3	11486	32	807
8	Computers in Biology and Medicine	2	11155	68	1467
9	Abdominal Radiology	3	10018	45	732
10	Medical Image Analysis	2	8768	30	1578

Figure 3. Rainbow density map of bibliographic coupling among journals in urology and AI. The map uses color variations to represent the strength of connections, with warmer colors indicating stronger bibliographic coupling based on shared references. The proximity of journal names reflects the degree of mutual citations, emphasizing notable relationships among leading journals such as Scientific Reports and PLOS One.

Biology and Medicine shows a strong connection with IEEE Access. Furthermore, Medical Physics and the Journal of Medical Imaging also exhibit significant bibliographic coupling. Additional details regarding these relationships are shown in Figure 3. This visualization further emphasizes the collaborative nature of research in this field and highlights the journals most relevant to urology and AI.

Influential Authors and Co-authorship Network Analysis

Among the most prolific authors, Turkbey emerged as the leading contributor with 52 publications, representing 0.9% of the total publications in this field. Somani followed with 27 publications (0.4%), while Brooks and Madabhushi each contributed 25 publications (0.4%). The complete list of the top 10 authors and their respective publication counts is presented in Table 2. The co-authorship analysis revealed extensive collaboration among researchers. To focus on the most prolific authors, we set a minimum threshold of 10 documents per author. Out of 32,549 authors identified in the dataset, 102 met this criterion. The resulting co-authorship network comprised 6 distinct clusters, with the most significant connected component consisting of 27 authors, which is the

primary focus of subsequent analyses. This network illustrates the various collaborative groups within the field, with notable interconnectedness among these core authors. The total link strength of the network was 554, indicating a substantial level of collaboration among the top contributors. Among the most collaborative authors, Turkbey emerged as the central figure with a total link strength of 132. Other key collaborators included Choyke and Pinto, both with a link strength of 74, followed closely by Wood, with a link strength of 70. Harmon and Xu also demonstrated strong collaborative ties, with a link strength of 62 and 59, respectively (Figure 4).

Co-occurrence Networks of Author Keywords

To identify the most frequent author keywords in this field, a threshold of 10 occurrences was applied. Among 9,613 unique keywords, 274 met this criterion. Interestingly, the majority of these keywords are associated with the years 2019 to 2023, indicating significant growth and increased attention to these topics in recent years, as illustrated in the overlay visualization of term co-occurrence in Figure 5 a. The most frequently occurring keywords, based on total co-occurrences, were "machine learning" (n = 1331), "prostate cancer" (n = 955), "deep learning" (n =

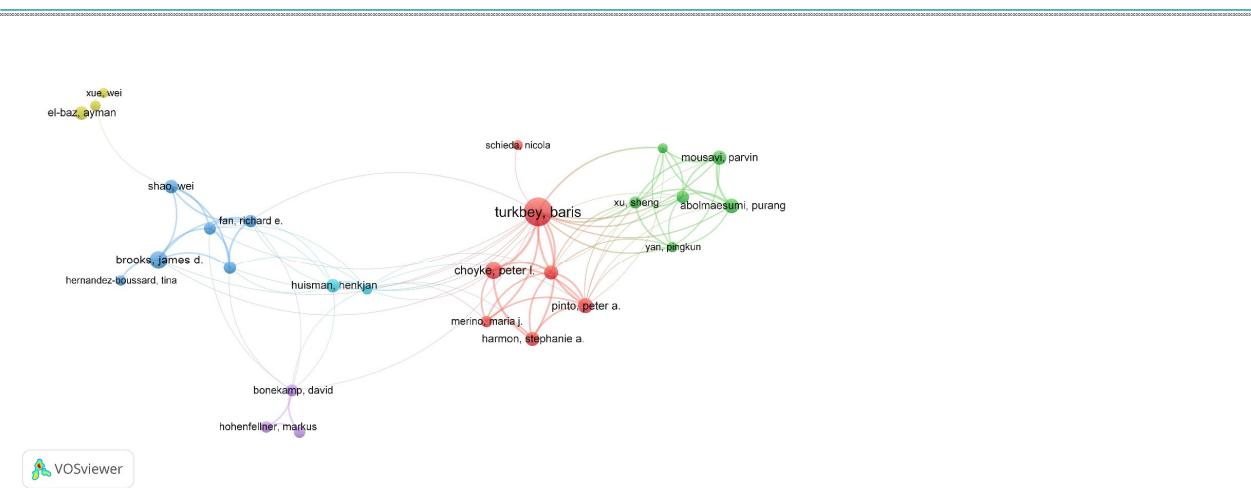


Figure 4. Co-Authorship Network in Urology and AI

The node sizes represent each author's overall collaborative reach, while the thickness of connections illustrates the strength of co-authorship links between authors. The network reveals distinct clusters of collaboration, highlighting key contributors and their interconnected relationships within the research field.

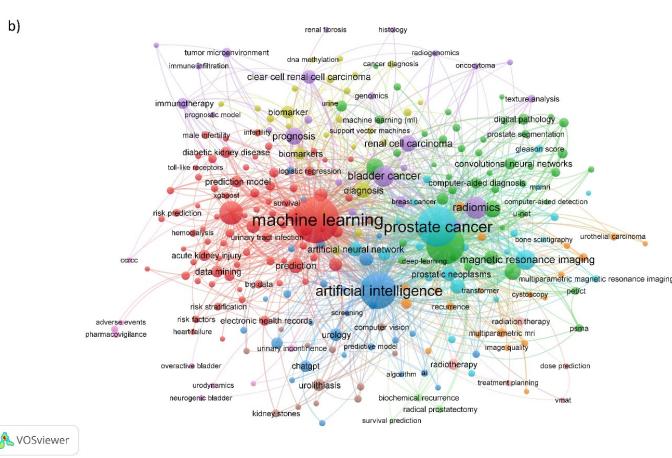
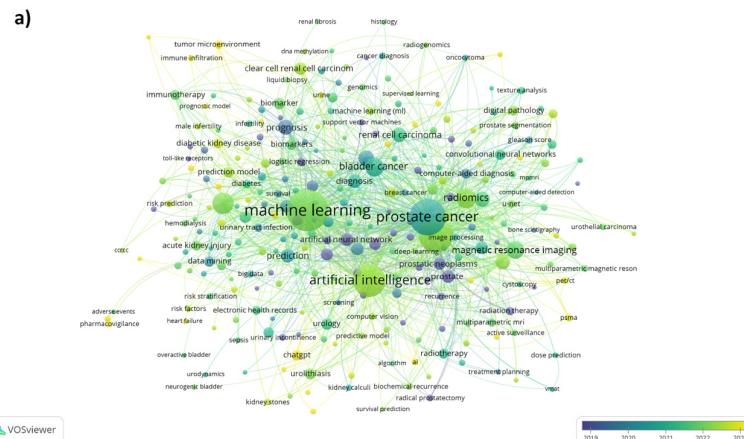



Figure 5. Overlay visualization (a) and Cluster analysis (b) of co-occurring author keywords in urology and AI. The node size indicates the number of publications associated with each keyword. In overlay visualization, the colors indicate the average publication year of each keyword, providing insights into recent trends and focal points in the research landscape.

838), "artificial intelligence" (n = 736), "chronic kidney disease" (n = 278), "radiomics" (n = 236), "bladder can-

cer" (n = 206), "magnetic resonance imaging" (n = 183), "classification" (n = 134), and "prognosis" (n = 132) (Ta-

Table 4. Temporal Trends of Core Keywords in AI and Urology Research Across Three Distinct Periods

No.	Keyword	1971-2000	2001-2012	2013-2024
1	Machine Learning	0	0	1326
2	Prostate Cancer	14	53	891
3	Deep Learning	0	0	840
4	Artificial Intelligence	0	0	723
5	Chronic Kidney Disease	0	0	278
6	Radiomics	0	0	237
7	Bladder Cancer	0	11	191
8	Magnetic Resonance Imaging	0	0	181
9	Classification	0	0	122
10	Prognosis	8	11	113


ble 4). Cluster analysis revealed 11 distinct research domains, as shown in Figure 5 b. The first cluster, dominated by ML methodology, contained 76 keywords representing predictive modeling approaches for disease outcomes, with the most frequent terms being "machine learning" (n = 1331), "chronic kidney disease" (n = 278), and "prediction" (n = 102). This cluster emphasized predictive modeling, featuring high-frequency terms; for example, "feature selection" (n = 83), "neural network" (n = 74), and "random forest" (n = 71). The second cluster, comprising 46 keywords, focused on DL for medical image analysis, with the most frequent terms being "deep learning" (n = 838), "classification" (n = 134), "convolutional neural network" (n = 127), and "MRI" (n = 121). This cluster highlighted imaging analysis through commonly occurring terms like "segmentation" (n = 84) and "transfer learning" (n = 55).

The third cluster, consisting of 28 keywords, centered on AI applications in clinical practice, with "artificial intelligence" (n = 736) as the most frequent term. The cluster included emerging technologies and clinical applications, represented by frequent terms such as "urology" (n = 65), "ChatGPT" (n = 53), and "natural language processing" (n = 53), along with "kidney disease" (n = 29). The fourth cluster contained 25 keywords emphasizing diagnostic biomarkers and molecular analysis, with the most commonly occurring terms being "diagnosis" (n = 98) and "biomarker" (n = 65). The cluster emphasized molecular and analytical approaches through terms like "proteomics" (n = 22) and "metabolomics" (n = 20). The fifth cluster, with its 24 keywords, concentrated on radiomics applications in oncology, with the most frequent terms being "radiomics" (n = 236), "bladder cancer" (n = 206), and "prognosis" (n = 132). This cluster included specific cancer types, represented by high-frequency terms such as "renal cell carcinoma" (n = 122) and "clear cell renal cell carcinoma" (n = 82). The sixth cluster, comprising 24 keywords, focused on prostate cancer imaging and diagnostics, with the most commonly occurring terms being "prostate cancer" (n = 955) and "magnetic resonance imaging" (n = 183), along with specific diagnostic terms like "artificial neural network" (n = 83) and "prostatic neoplasms" (n = 78). Clusters seven through eleven showed increasing specialization: the seventh cluster (21 keywords) specialized in ultrasound imaging techniques with "ultrasound" (n = 41) as the primary term; the eighth cluster (13 keywords) focused on urolithiasis and kidney

stone analysis with "urolithiasis" (n = 59) and kidney stones; the ninth cluster (9 keywords) concentrated on urinary conditions and drug safety; the tenth cluster (5 keywords) emphasized radiotherapy applications with "radiotherapy" (n = 47); and the eleventh cluster (3 keywords) focused on biochemical aspects of prostate cancer.

Temporal Author Keyword Trends Across Three Time Periods

To investigate keyword trends over time, we segmented the study period into three distinct intervals: 1971-2000 (only 12 of these years included publications), 2001-2012, and 2013-2024. This temporal analysis allowed us to examine the evolution and significance of key research terms within each interval, highlighting shifts in focus and the development of new research themes (Figure 6). Additionally, we tracked the occurrence patterns of the overall top ten keywords across these intervals (Table 4), revealing their temporal progression and emergence. The initial period (1971-2000) represented foundational research, with sporadic publication patterns (Figure 6 a). Among the overall top ten keywords, only "prostate cancer" (14 occurrences) and "prognosis" (8 occurrences) were present during this period, complemented by "neural networks" (14 occurrences), reflecting early integration of computational methods in urological research. The intermediate period (2001-2012) showed substantial diversification, with "prostate cancer" emerging as the dominant theme (53 occurrences). This period marked the transition toward computational methodologies, evidenced by multiple variants of neural network terminology: "artificial neural network" (n = 22), "artificial neural networks" (n = 20), and "neural networks" (n = 20). Clinical keywords gained prominence, including "prostate" (n = 12) and "prostatic neoplasms" (n = 11, Figure 6 b). Among the overall top 10 keywords, "bladder cancer" appeared with 11 occurrences, and "prognosis" maintained its presence with 11 occurrences (Table 4). The contemporary period (2013-2024) demonstrated exponential growth in AI applications (Figure 6 c). Among the overall top ten keywords, "machine learning" led with 1326 occurrences, followed by "prostate cancer" (n = 891), "deep learning" (n = 840), and "artificial intelligence" (n = 723). Clinical research expanded significantly, with "chronic kidney disease" (n = 278), "radiomics" (n = 237), "bladder cancer" (n = 191), "magnetic resonance imaging" (n = 181), "classification" (n = 122), and "prognosis" (n = 113) completing the keyword

Figure 6. Item Density Visualization of Temporal Author Keyword Trends in Urology and AI. (a: Early Period (1971-2000), b: Intermediate Period (2001-2012), c: Contemporary Period (2013-2024)).

profile (Table 4). Interestingly, several new research domains emerged in this period, represented by keywords

such as "pharmacovigilance," "FAERS," "urolithiasis," "ChatGPT," "VMAT," "Dose Prediction," and "robotics"

(Figure 6 c).

Frequent Terms in Titles and Abstracts

Our bibliometric analysis of article titles and abstracts reviewed 109,909 terms, identifying 1,758 with at least 20 occurrences. The most frequently occurring terms included "image" (1067 occurrences), "AUC" (856 occurrences), "chronic kidney disease" (801 occurrences), and "deep learning" (794 occurrences). Other notable terms were "age" (609 occurrences), "PCA" (567 occurrences), "CKD" (529 occurrences), "biomarker" (516 occurrences), "MRI" (487 occurrences), and "prognosis" (485 occurrences). We identified a total of five clusters, each representing a distinct area of focus within the broader topic, as depicted in Figure 7. Cluster 1 centers on chronic kidney disease (CKD), with key terms including "chronic kidney disease" (801 occurrences), "age" (n = 609), and "prediction model" (n = 330). This cluster highlights the relationship between kidney health and various predictive models used in clinical settings. Cluster 2 focuses on biomarkers and prognosis, featuring terms like "biomarker" (n = 516) and "gene" (n = 444). It emphasizes the role of biological markers in assessing disease progression and patient outcomes. Cluster 3 is dedicated to imaging techniques, prominently featuring "image" (n = 1067) and "deep learning" (n = 794). This cluster showcases advancements in imaging technologies and their applications in medical diagnostics. Cluster 4 relates to diagnostic metrics and includes terms such as "AUC" (n = 856) and "MRI" (n = 487). It focuses on the evaluation of diagnostic tools and their effectiveness in clinical practice. Finally, Cluster 5 covers literature reviews and advancements, containing terms "review" (n = 440) and "urology" (n = 157). This cluster reflects ongoing research trends and developments in the field, highlighting the importance of comprehensive reviews in synthesizing knowledge about AI applications in urology.

Discussion

The bibliometric analysis demonstrates a rapid evolution of AI in urology, with publications increasing from 478 in 2020 to 1337 in 2024, reflecting accelerated AI integration and advancements in ML, DL architectures, and computational capabilities (16-19). The analysis revealed a high open access publication rate (63.9%) in AI and urology, significantly exceeding typical publication accessibility rates in other scientific domains (20) and reflecting a commitment to research dissemination and accelerated knowledge transfer (21).

The distribution across 21 subject areas, led by Medicine, Biochemistry, Genetics, Molecular Biology, and Computer Science, underscores AI's interdisciplinary role in urology. This integration is vital for developing clinically relevant AI solutions addressing real-world challenges (5, 22). Engineering and health professions further highlight the field's collaborative efforts. By 2024, 25,877 citations reflect the increasing research volume and impact, with the accelerating citation rate marking AI's shift from theory to practice, influencing clinical care and future research (23). This aligns with studies emphasizing AI's growing impact across medical specialties (24).

The analysis of highly cited publications reveals diverse applications and rapid advancements of AI in urology, with a focus on post-2010 studies emphasizing the field's contemporary relevance. Campanella et al's (2019) prominent study, with 279.6 citations per year, highlights AI's transformative role in histopathology (11). This aligns with the broader trend of AI implementation in diagnostic medicine, particularly in image-based specialties like pathology and radiology (25-29). The citation patterns of these influential works reveal 2 interconnected research streams: computational pathology (eg, Campanella et al) (11), and specific urological diagnostics (eg, Adam et al) (13), highlighting the field's focus on both specialized AI applications in pathology and broader diagnostic uses in urology.

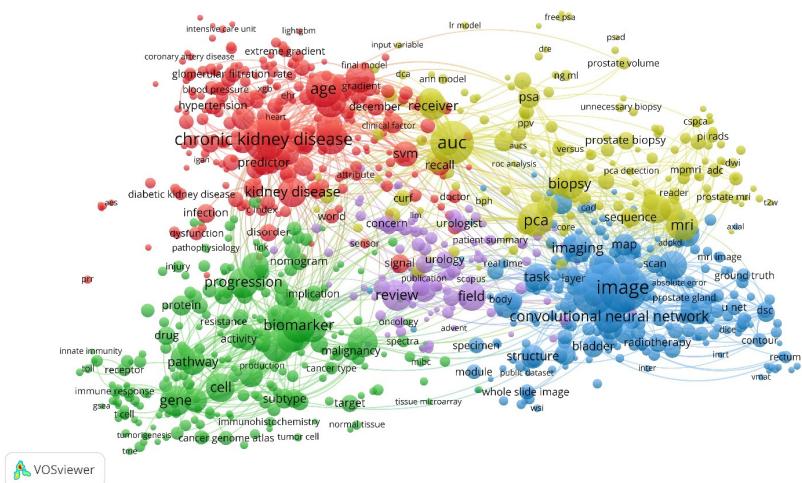


Figure 7. Cluster Analysis of Co-Occurrence of Terms in Titles and Abstracts. Node sizes indicate the number of publications associated with each term, reflecting the relative research volume within each theme.

The geographical distribution of research highlights both opportunities and challenges in advancing AI in urology. The US (31.1%) and China (23.7%) lead in publication volume, reflecting significant investments in AI and medical research (30, 31). Together with India, these countries contribute 63% of publications, raising concerns about global equity in AI development for urological care. This concentration has profound implications for AI model generalizability, as algorithms trained predominantly on specific populations exhibit reduced accuracy when applied to underrepresented groups, potentially amplifying existing health disparities (32, 33). International collaboration, with a link strength of 5,594 across 57 countries, highlights growing global cooperation. The US acts as a central hub, fostering strong networks with Europe, particularly the UK and Germany, promoting knowledge exchange and technology transfer. However, minimal involvement from African nations reveals a gap in research distribution, raising concerns about the lack of representation of diverse patient populations critical for clinically robust AI systems (34). This geographic bias is particularly concerning as comprehensive analyses show that datasets from high-income countries dominate clinical AI research, with populations from low- and middle-income countries severely underrepresented (35). Such disparities may result in AI systems that fail to adequately serve diverse populations, potentially exacerbating healthcare inequalities (36).

To address these gaps, researchers advocate for more inclusive data collection practices and the implementation of fairness assessment frameworks to identify potential algorithmic biases before clinical deployment (32, 37, 38).

The notable engagement from Middle Eastern countries presents an opportunity for expanding the geographical and demographic scope of AI applications in urology.

The publication landscape of AI-urology research is widely distributed across journals, with *Scientific Reports* leading at just 2.9% of publications. This diversity reflects the field's broad relevance across scientific domains and its integration into both specialized and general research discourse (22, 39). The bibliographic coupling analysis highlights the intellectual structure of AI-urology (40, 41), with *Cancers* and *European Radiology* as central nodes in the knowledge network. The strong coupling between *Scientific Reports* and *PLOS One* reflects the open science movement's impact. The analysis also identifies distinct research sub-communities in specialized journals like *European Journal of Nuclear Medicine and Molecular Imaging* and *Quantitative Imaging in Medicine and Surgery*, showing the field's progression toward specialized technological applications.

The analysis of authorship patterns reveals a mix of concentrated expertise and diversity in AI-urology research. Turkbey stands out with 52 publications (0.9%) and a strong collaborative network (link strength: 132), marking key research hubs. Six author clusters, with the largest group of 27, reflect a structure that promotes both specialized knowledge and the exchange of diverse ideas (42).

The co-authorship network shows strong collaborations

among authors like Choyke, Pinto, and Wood, forming stable research teams that drive consistent advancements. Additionally, independent research groups highlight multiple centers of innovation, promoting diverse approaches to common challenges (43, 44).

The alignment between productive authors and strong collaborations highlights AI-urology's reliance on team science and interdisciplinary expertise in urology, computer science, and data analysis (22, 45).

The keyword co-occurrence analysis highlights key patterns in the intellectual structure and development of AI in urology. The prominence of terms like "machine learning" and "deep learning" alongside "prostate cancer" shows the field's balance between technological innovation and clinical application (46, 47). The formation of eleven distinct research clusters indicates the field's maturation and specialization, particularly in areas like radiomics and precision diagnostics (48-51). The temporal analysis of keyword evolution reveals the field's transformation from basic neural networks (1971-2000) to advanced AI applications (2013-2024). The sharp increase in AI-related keywords after 2013 aligns with breakthroughs in DL and medical imaging (23). A key development is the emergence of specialized clusters, particularly the radiomics cluster, which is revolutionizing the analysis of imaging data in urological oncology (49, 52). Similarly, the emergence of natural language processing (NLP) and ChatGPT-related research indicates the rapid adoption of new AI in clinical applications (53-57). The emergence of ChatGPT as a prominent keyword in our analysis suggests growing clinical interest supported by preliminary validation studies demonstrating its potential utility in urological practice. Clinical studies have explored ChatGPT's applications in administrative tasks, showing capabilities in generating discharge summaries, clinical notes, and documentation that may reduce urologists' administrative burden (55, 56, 58). In patient care settings, ChatGPT-4 demonstrated comparable performance to physician groups in urological assessments and showed enhanced psychological support capabilities compared to ChatGPT-3.5 (59). For clinical decision support, ChatGPT showed reasonable safety for initial diagnostics in urolithiasis management, though limitations were noted in complex treatment planning compared to EAU guidelines (60). However, diagnostic imaging interpretation revealed initial limitations with accuracy rates of only 14% for CT and 28% for MRI cases, though this improved to 62% with organ guidance (61). Fine-tuning approaches have shown promise, with specialized training achieving 93.75% accuracy in renal cell carcinoma clinical questions (62). These findings suggest ChatGPT's potential as an auxiliary tool under expert supervision, particularly for administrative tasks, patient education, and initial clinical support, while emphasizing the need for human oversight in complex diagnostic scenarios (53, 63-66). Evaluations of GPT-4 in urolithiasis management showed reasonable safety for initial diagnostics but highlighted limitations in metaphylaxis and surgical planning compared to EAU guidelines (67). AI chatbots also demonstrated varying reliability in classifying dietary oxalate content, with ac-

curacy ranging from 49% to 84% (68). However, ChatGPT showed over 95% accuracy in answering common urolithiasis-related questions, suggesting its potential for patient education (69). These findings indicate that while AI tools can support urological care, their implementation should be closely supervised and limited to validated applications.

An emerging research domain is the integration of pharmacovigilance and Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS)-related studies, highlighting new approaches to drug safety monitoring in urology. AI and ML technologies, including NLP and DL, show promise in processing Individual Case Safety Reports (ICSRs) within FAERS. However, current systems require a "human-in-the-loop" approach for quality control, mainly due to challenges in data quality and the need for robust validation. The performance of these AI models is heavily influenced by the quality and quantity of available data, particularly in resource-limited settings (70, 71). AI integration has enabled early detection of adverse drug reactions and drug-induced toxicity, potentially improving patient safety (72). Nonetheless, the field faces challenges in developing standardized quality assurance methods and comprehensive training datasets (72, 73). Robotics is a key emerging domain in urology, with a shift from traditional non-AI robotic surgery to AI-enhanced platforms. ML algorithms have shown promise in assessing surgical skills through automated performance metrics (APMs) derived from instrument kinematic data, achieving up to 96% AUC in predicting surgeon proficiency in nerve-sparing robot-assisted radical prostatectomy (74) and predicting intraoperative complications like bleeding with models such as Random Forest achieving 74.5% accuracy in percutaneous nephrolithotomy (75) and Light Gradient Boosting demonstrating AUC of 0.933 across various urological procedures. These predictive models utilize key factors including operative time, D-dimer levels, and patient age to assess bleeding risk in real-time. (76). Our bibliometric analysis revealing robotics as an emerging keyword is supported by recent clinical implementations demonstrating AI integration with robotic platforms. Clinical studies show surgical intelligence platforms can objectively assess key surgical steps in robotic-assisted radical prostatectomy across multiple institutions, with analysis of 883 cases demonstrating measurable practice variability (77). Advanced robotic systems, including the Da Vinci SP and Senhance platforms, now offer enhanced capabilities such as tactile feedback and eye-tracking (78). At the same time, 3D reconstruction with augmented reality improves surgical precision by identifying anatomical relationships between tumors and surrounding structures (79). These developments validate our quantitative findings and demonstrate the field's progression toward AI-enhanced robotic surgery. AI-driven augmented reality systems have improved tumor localization during nerve-sparing procedures (80), and ML models can predict postoperative outcomes based on automated performance metrics (81). These advancements highlight the evolution of robotics integrating AI to enhance precision, decision support, and performance assessment.

However, careful validation and integration of these intelligent systems are crucial for their widespread clinical use (82).

The integration of AI in volumetric modulated Arc radiotherapy (VMAT) treatment planning and dose prediction is transforming radiation therapy for prostate cancer. DL approaches have shown high accuracy in dose distribution predictions, with mean absolute errors of 1.9% for planning target volume and 1.3% for clinical target volume (83). This is a significant improvement over traditional methods, which take 5 to 30 minutes for optimization (84). Automated planning systems, such as those based on HD-U-net, have demonstrated clinical viability with average dose differences of $1.32\% \pm 1.35\%$ for target structures and $2.08\% \pm 2.79\%$ for organs at risk (85). These systems have excelled in optimizing dose-volume histograms for critical organs like the bladder and rectum, sometimes outperforming conventional plans (85). The implementation of ML algorithms in this field not only addresses efficiency challenges but also enhances treatment plan quality by enabling more extensive exploration of planning options (84, 86). Recent feasibility studies have further validated these approaches, with some models achieving Dice similarity coefficients of 0.91 when comparing predicted versus actual isodose volumes (86, 87).

The analysis of frequent terms in titles and abstracts highlights a focus on quantifiable outcomes and clinical validation, with terms like "AUC" and "biomarker" suggesting rigorous AI validation in clinical settings (88-92). Five clusters align with key clinical priorities: CKD management, biomarker discovery, imaging analysis, diagnostic metrics, and knowledge synthesis (93). The prominence of imaging terms (1,067 occurrences for "image") underscores computer vision's central role in urological AI research (94, 95). This trend, combined with the high frequency of diagnostic and prognostic terms, suggests that the field is moving toward more integrated AI solutions that combine multiple data modalities for improved clinical decision-making (23, 96-99).

Future directions in urology show promising advancements. The integration of AI is progressing towards personalized medicine, combining genomic, imaging, and clinical data to form comprehensive patient profiles. NLP and large language models (LLMs) show promise for patient education but need refinement for clinical support. AI-enhanced robotic surgery aids in skill assessment and complication prediction, while emerging pharmacovigilance applications could improve outcomes. However, these innovations require ethical consideration and validation. Future research should focus on creating clinically robust AI solutions that represent diverse patient populations and encourage international collaboration for standardized implementation in clinical practice. This study has limitations, including its focus on English-language publications and reliance on the Scopus database, which may miss studies from other sources. Rapid AI advancements, especially in NLP and LLMs, may also not be fully captured due to publication delays. Future research could address these gaps by including multiple databases, lan-

guages, and unpublished studies (e.g., preprints).

Conclusion

The bibliometric analysis of 5755 publications (1971–2024) with 25,877 citations and a 63.9% open access rate underscores AI's transformative role in urology, driven by interdisciplinary collaboration and open access. Research clusters in radiomics, diagnostic imaging, and biomarker discovery address key clinical challenges, while collaboration patterns underscore the success of team-based AI research in healthcare solutions. As AI continues to integrate into clinical workflows, ongoing research must address ethical, technical, and practical considerations, particularly around patient safety and the equitable representation of diverse populations. The field's next phase may involve expanding applications beyond high-resource settings and developing standards for evaluating AI systems in clinical practice. Future studies should prioritize standardized protocols for AI validation in urology to ensure clinical reliability and facilitate consistent evaluation across diverse clinical settings and populations. Addressing these challenges and continuing to foster international collaboration will be essential in realizing AI's full potential in enhancing patient care and clinical outcomes in urology. These insights can inform research priorities, allocation of resources, and collaborative endeavors, all of which, in due course, would improve our understanding and management of urological conditions.

Authors' Contributions

KH and SBK conceptualized the study, designed the research methodology, and led the data analysis and interpretation. GM contributed to the systematic literature search and data synthesis. HAK provided methodological expertise and participated in data validation. AF contributed to the theoretical framework development and manuscript drafting. HA performed the systematic literature search and conducted data analysis. MRF provided statistical guidance and contributed to quality assessment of included studies. FS participated in data extraction and verification processes. HD provided overall supervision throughout the research process, offered critical academic guidance, and conducted comprehensive review of the manuscript. All authors contributed to manuscript revision and approved the final version for submission.

Ethical Considerations

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Acknowledgment

Not applicable.

Conflict of Interests

The authors declare that they have no competing interests.

References

1. Latini JM, Faerber GJ, Schuster TG, Roberts WW. Chapter 16 - Urology. In: Heidelbaugh JJ, editor. Clinical Men's Health. Philadelphia: W.B. Saunders; 2008. p. 278-320.
2. Van Arsdalen KN. CHAPTER 1 - Signs and symptoms: The initial examination. In: Guzzo TJ, Wein AJ, Kovell RC, Weiss DA, Ziembra JB, editors. Penn Clinical Manual of Urology (Third Edition). New Delhi: Elsevier; 2024. p. 1-32.e1.
3. Chowdhury AT, Salam A, Naznine M, Abdalla Da, Erdman L, Chowdhury ME, et al. Artificial intelligence tools in pediatric urology: a comprehensive review of recent advances. *Diagnostics*. 2024;14(18):2059.
4. Chu KY, Tradewell MB. Artificial Intelligence in Urology. In: Lidströmer N, Ashrafiyan H, editors. Artificial Intelligence in Medicine. Cham: Springer International Publishing; 2020. p. 1-9.
5. Shah M, Naik N, Somani BK, Hameed BMZ. Artificial intelligence (AI) in urology: Current use and future directions- An iTRUE study. *Turk J Urol*. 2020;46(Suppl. 1):S27-s39.
6. Hameed BMZ, Dhavileswarapu AVLS, Raza SZ, Karimi H, Khanuja HS, Shetty DK, et al. Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature. *J Clin Med*. 2021;10(9).
7. Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. *J Informetr*. 2017;11(4):959-75.
8. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. *J Bus Res*. 2021;133:285-96.
9. Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in Web of Science, Scopus, and Google Scholar for articles published in general medical journals. *Jama*. 2009;302(10):1092-6.
10. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. *Scientometrics*. 2010;84(2):523-38.
11. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. *Nat Med*. 2019;25(8):1301-9.
12. Hamet P, Tremblay J. Artificial intelligence in medicine. *Metab: Clin Exp*. 2017;69:S36-s40.
13. Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. *Cancer res*. 2002;62(13):3609-14.
14. Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. *Lancet Oncol*. 2020;21(2):233-41.
15. Strömb P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. *Lancet Oncol*. 2020;21(2):222-32.
16. Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. *PLoS Med*. 2018;15(11):e1002699.
17. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. *Nature*. 2017;542(7639):115-8.
18. Grewal M, Srivastava MM, Kumar P, Varadarajan S, editors. RADnet: Radiologist-level accuracy using deep learning for hemorrhage detection in CT scans. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018 4-7 April 2018.
19. Tay MM. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications, and Future Directions. *Computers*. 2023;12(5):91.
20. Piwowar H, Priem J, Larivière V, Alperin JP, Matthias L, Norlander B, et al. The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles. *PeerJ*. 2018;6:e4375.
21. McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, et al. How open science helps researchers succeed. *eLife*. 2016;5:e16800.
22. Bertagnolli MM. Advancing health through artificial intelligence/machine learning: The critical importance of multidisciplinary collaboration. *PNAS Nexus*. 2023;2(12):pgad356.
23. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. *Nature Med*. 2019;25(1):44-56.
24. Basu K, Sinha R, Ong A, Basu T. Artificial Intelligence: How is It

Changing Medical Sciences and Its Future? *Indian J Dermatol.* 2020;65(5):365-70.

25. Luchini C, Pea A, Scarpa A. Artificial intelligence in oncology: current applications and future perspectives. *Br J Cancer.* 2022;126(1):4-9.

26. Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. *Sci Rep.* 2018;8(1):12054.

27. Greer MD, Lay N, Shih JH, Barrett T, Bittencourt LK, Borofsky S, et al. Computer-aided diagnosis before conventional interpretation of prostate mpMRI: an international multi-reader study. *Eur Radiol.* 2018;28(10):4407-17.

28. Rezaeilouyeh H, Mollahosseini A, Mahoor MH. Microscopic medical image classification framework via deep learning and shearlet transform. *J Med Imaging (Bellingham, Wash.)*. 2016;3(4):044501.

29. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. *Cell Rep.* 2018;23(1):181-93.e7.

30. Jena OP, Tripathy AR, Elngar AA, Polkowski Z. Computational intelligence and healthcare informatics: John Wiley & Sons; 2021.

31. Zuhair V, Babar A, Ali R, Oduoye MO, Noor Z, Chris K, et al. Exploring the Impact of Artificial Intelligence on Global Health and Enhancing Healthcare in Developing Nations. *J Prim Care Community Health.* 2024;15:21501319241245847.

32. Wang ML, Bertrand KA. AI for all: bridging data gaps in machine learning and health. *Transl Behav Med.* 2025;15(1).

33. Röösl E, Bozkurt S, Hernandez-Boussard T. Peeking into a black box, the fairness and generalizability of a MIMIC-III benchmarking model. *Sci Data.* 2022;9(1):24.

34. De Nicolò V, La Torre D. Chapter 11 - Global research trends of Artificial Intelligence and Machine Learning applied in medicine: A bibliometric analysis (2012–2022). In: Ben-David S, Curgiliano G, Koff D, Jereczek-Fossa BA, La Torre D, Pravettini G, editors. *Artificial Intelligence for Medicine*: Academic Press; 2024. p. 151-77.

35. Celi LA, Callini J, Charpignon M-L, Dee EC, Demonceau F, Eber R, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities-A global review. *PLOS Digit Health.* 2022;1(3):e0000022.

36. Gao Y, Sharma T, Cui Y. Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective. *Annu Rev Biomed Data Sci.* 2023;6(Volume 6, 2023):153-71.

37. Herington J, McCradden MD, Creel K, Boellaard R, Jones EC, Jha AK, et al. Ethical Considerations for Artificial Intelligence in Medical Imaging: Data Collection, Development, and Evaluation. *J Nucl Med.* 2023;64(12):1848.

38. Ellen JG, Matos J, Viola M, Gallifant J, Quion J, Anthony Celi L, et al. Participant flow diagrams for health equity in AI. *J Biomed Inform.* 2024;152:104631.

39. Dwivedi YK, Hughes L, Ismagilova E, Aarts G, Coombs C, Crick T, et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. *Int J Inf Manag.* 2021;57:101994.

40. Gautam P. A bibliometric approach for department-level disciplinary analysis and science mapping of research output using multiple classification schemes. *J Contemp East Asia.* 2019;18(1):7-29.

41. Pham Tan L. Mapping the social entrepreneurship research: Bibliographic coupling, co-citation and co-word analyses. *Cogent Bus Manag.* 2021;8(1):1896885.

42. Hoppe B, Reinelt C. Social network analysis and the evaluation of leadership networks. *The Leadership Quarterly.* 2010;21(4):600-19.

43. Bhattacharyya O, Shapiro J, Schneider EC. Innovation Centers in Health Care Delivery Systems: Structures for Success. *J Med Internet Res.* 2022;24(2):e33961.

44. Speck RM, Weisberg RW, Fleisher LA. Varying goals and approaches of innovation centers in academic health systems: a semistructured qualitative study. *Acad Med.* 2015;90(8):1132-6.

45. Stafie CS, Sufaru IG, Ghiciuc CM, Stafie II, Sufaru EC, Solomon SM, et al. Exploring the Intersection of Artificial Intelligence and Clinical Healthcare: A Multidisciplinary Review. *Diagnostics (Basel, Switzerland).* 2023;13(12).

46. Busnatu S, Niculescu AG, Bolocan A, Petrescu GED, Păduraru DN, Năstășă I, et al. Clinical Applications of Artificial Intelligence-An Updated Overview. *J Clin Med.* 2022;11(8).

47. Li YH, Li YL, Wei MY, Li GY. Innovation and challenges of artificial intelligence technology in personalized healthcare. *Sci Rep.* 2024;14(1):18994.

48. Chaddad A, Tan G, Liang X, Hassan L, Rathore S, Desrosiers C, et al. Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. *Cancers.* 2023;15(15).

49. Gelikman DG, Rais-Bahrami S, Pinto PA, Turkbey B. AI-powered radiomics: revolutionizing detection of urologic malignancies. *Curr Opin Urol.* 2024;34(1):1-7.

50. Feretzakis G, Juliebø-Jones P, Tsaturyan A, Sener TE, Verykios VS, Karapiperis D, et al. Emerging Trends in AI and Radiomics for Bladder, Kidney, and Prostate Cancer: A Critical Review. *Cancers [Internet].* 2024; 16(4).

51. Ge L, Chen Y, Yan C, Zhao P, Zhang P, Liu J. Study progress of radiomics with machine learning for precision medicine in bladder cancer management. *Front Oncol.* 2019;9:1296.

52. Kozikowski M, Suarez-Ibarrola R, Osiecki R, Bilski K, Gratzke C, Sharif SF, et al. Role of Radiomics in the Prediction of Muscle-invasive Bladder Cancer: A Systematic Review and Meta-analysis. *Eur Urol Focus.* 2022;8(3):728-38.

53. Qin S, Chislett B, Ischia J, Ranasinghe W, de Silva D, Coles-Black J, et al. ChatGPT and generative AI in urology and surgery-A narrative review. *BJUI Compass.* 2024;5(9):813-21.

54. Lombardo R, Ciccone A, Santoro G, De Nunzio C. ChatGPT in prostate cancer: myth or reality? *Prostate Cancer Prostatic Dis.* 2024;27(1):9-10.

55. Nedbal C, Naik N, Castellani D, Gauhar V, Geraghty R, Somani BK. ChatGPT in urology practice: revolutionizing efficiency and patient care with generative artificial intelligence. *Curr Opin Urol.* 2024;34(2):98-104.

56. Talyshinskii A, Naik N, Hameed BMZ, Zhanbyrbekuly U, Khairli G, Guliev B, et al. Expanding horizons and navigating challenges for enhanced clinical workflows: ChatGPT in urology. *Front Surg.* 2023;10:1257191.

57. Coccia A, Pezzoli M, Lo Re M, Russo GI, Asmundo MG, Fode M, et al. Quality of information and appropriateness of ChatGPT outputs for urology patients. *Prostate Cancer Prostatic Dis.* 2024;27(1):103-8.

58. Lazaros T, Konstantinos K, Georgios F, Stamatios K, Ioannis M, Patrick J-J, et al. ChatGPT in Clinical Medicine, Urology and Academia: A Review. *Arc Esp Urol.* 2024;77(7):708-17.

59. Peng L, Liang R, Zhao A, Sun R, Yi F, Zhong J, et al. Amplifying Chinese physicians' emphasis on patients' psychological states beyond urologic diagnoses with ChatGPT – a multicenter cross-sectional study. *Int J Surg.* 2024;110(10):6501-8.

60. Ates T, Tamkac N, Sukur IH, Ok F. What is the role of large language models in the management of urolithiasis?: a review. *Urolithiasis.* 2025;53(1):92.

61. Cole MW, Assani KD, Robinson HS, Wimbiscus M, Launer BM, Chew RJ, et al. Accuracy of a ChatGPT in Diagnosing Urologic Conditions From Cross-sectional Imaging. *Urology.* 2025;196:27-31.

62. Liang R, Zhao A, Peng L, Xu X, Zhong J, Wu F, et al. Enhanced Artificial Intelligence Strategies in Renal Oncology: Iterative Optimization and Comparative Analysis of GPT 3.5 Versus 4.0. *Ann Surg Oncol.* 2024;31(6):3887-93.

63. Hirtseifer C, Nestler T, Eckrich J, Beverungen H, Siech C, Aksoy C, et al. Capabilities of ChatGPT-3.5 as a Urological Triage System. *Eur Urol Open Sci.* 2024;70:148-53.

64. Solano C, Tarazona N, Angarita GP, Medina AA, Ruiz S, Pedroza VM, et al. ChatGPT in Urology: Bridging Knowledge and Practice for Tomorrow's Healthcare, a Comprehensive Review. *J Endourol.* 2024;38(8):763-77.

65. Adhikari K, Naik N, Hameed BMZ, Raghunath SK, Somani BK. Exploring the Ethical, Legal, and Social Implications of ChatGPT in Urology. *Curr Urol Rep.* 2024;25(1):1-8.

66. Braga AVNM, Nunes NC, Santos EN, Veiga ML, Braga AANM, Abreu GEd, et al. Use of ChatGPT in Urology and its Relevance in Clinical Practice: Is it useful? *Int braz j urol.* 2024;50(2):192-8.

67. Talyshinskii A, Juliebø-Jones P, Zeeshan Hameed BM, Naik N, Adhikari K, Zhanbyrbekuly U, et al. ChatGPT as a Clinical Decision Maker for Urolithiasis: Compliance with the Current European Association of Urology Guidelines. *Eur Urol Open Sci.* 2024;69:51-62.

68. Aiumtrakul N, Thongprayoon C, Arayangkool C, Vo KB, Wannaphut C, Suppadungsuk S, et al. Personalized Medicine in Urolithiasis: AI Chatbot-Assisted Dietary Management of Oxalate for

Kidney Stone Prevention. *J Pers Med.* 2024;14(1):107.

69. Cakir H, Caglar U, Yildiz O, Meric A, Ayranci A, Ozgor F. Evaluating the performance of ChatGPT in answering questions related to urolithiasis. *Int Urol Nephrol.* 2024;56(1):17-21.

70. Shamim MA, Shamim MA, Arora P, Dwivedi P. Artificial intelligence and big data for pharmacovigilance and patient safety. *J Med Surg Public Health.* 2024;3:100139.

71. Liang L, Hu J, Sun G, Hong N, Wu G, He Y, et al. Artificial Intelligence-Based Pharmacovigilance in the Setting of Limited Resources. *Drug Saf.* 2022;45(5):511-9.

72. Balendran A, Benchoufi M, Evgeniou T, Ravaud P. Algorithmovigilance, lessons from pharmacovigilance. *npj Digit Med.* 2024;7(1):270.

73. Ball R, Dal Pan G. "Artificial Intelligence" for Pharmacovigilance: Ready for Prime Time? *Drug Saf.* 2022;45(5):429-38.

74. Schuler N, Shepard L, Saxton A, Russo J, Johnston D, Saba P, et al. Predicting Surgical Experience After Robotic Nerve-sparing Radical Prostatectomy Simulation Using a Machine Learning-based Multimodal Analysis of Objective Performance Metrics. *Urol Pract.* 2023;10(5):447-55.

75. Meng R, Wang W, Zhai Z, Zuo C. Machine learning algorithm to predict postoperative bleeding complications after lateral decubitus percutaneous nephrolithotomy. *Medicine.* 2024;103(4):e37050.

76. Shi Y, Zhang G, Ma C, Xu J, Xu K, Zhang W, et al. Machine learning algorithms to predict intraoperative hemorrhage in surgical patients: a modeling study of real-world data in Shanghai, China. *BMC Med Inform Decis Mak.* 2023;23(1):156.

77. Zuluaga L, Bamby J, Okhawere KE, Ucpinar B, Razdan S, Badani KK. Assessing operative variability in robot-assisted radical prostatectomy (RARP) through AI. *J Robot Surg.* 2025;19(1):99.

78. Hong SY, Qin BL. Recent Advances in Robotic Surgery for Urologic Tumors. *Medicina.* 2024;60(10):1573.

79. Bignante G, Orsini A, Lasorsa F, Lambertini L, Pacini M, Amparore D, et al. Robotic-assisted surgery for the treatment of urologic cancers: recent advances. *Expert Rev Med Devices.* 2024;21(12):1165-77.

80. Checcucci E, Piana A, Volpi G, Piazzolla P, Amparore D, De Cillis S, et al. Three-dimensional automatic artificial intelligence driven augmented-reality selective biopsy during nerve-sparing robot-assisted radical prostatectomy: A feasibility and accuracy study. *Asian J Urol.* 2023;10(4):407-15.

81. Hung AJ, Chen J, Che Z, Nilanon T, Jarc A, Titus M, et al. Utilizing Machine Learning and Automated Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes. *J of Endourol.* 2018;32(5):438-44.

82. Doyle PW, Kavoussi NL. Machine learning applications to enhance patient specific care for urologic surgery. *World J Urol.* 2022;40(3):679-86.

83. Lempart M, Benedek H, Jamtheim Gustafsson C, Nilsson M, Eliasson N, Bäck S, et al. Volumetric modulated arc therapy dose prediction and deliverable treatment plan generation for prostate cancer patients using a densely connected deep learning model. *Phys Imaging Radiat Oncol.* 2021;19:112-9.

84. Jensen PJ, Zhang J, Koontz BF, Wu QJ. A Novel Machine Learning Model for Dose Prediction in Prostate Volumetric Modulated Arc Therapy Using Output Initialization and Optimization Priorities. *Front Artif Intell.* 2021;4.

85. Kadoya N, Kimura Y, Tozuka R, Tanaka S, Arai K, Katsuta Y, et al. Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients. *J Radiat Res.* 2023;64(5):842-9.

86. Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. *Sci Rep.* 2019;9(1):1076.

87. Willems S, Crijns W, Sterpin E, Haustermans K, Maes F. Feasibility of CT-Only 3D Dose Prediction for VMAT Prostate Plans Using Deep Learning. *Artificial Intelligence in Radiation Therapy: First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings;* Shenzhen, China: Springer-Verlag; 2019. p. 10-7.

88. Ramwala OA, Lowry KP, Cross NM, Hsu W, Austin CC, Mooney SD, et al. Establishing a Validation Infrastructure for Imaging-Based Artificial Intelligence Algorithms Before Clinical Implementation. *J Am Coll of Radiol.* 2024;21(10):1569-74.

89. Nsoesie EO. Evaluating Artificial Intelligence Applications in Clinical Settings. *JAMA Netw Open.* 2018;1(5):e182658-e.

90. Tsopra R, Fernandez X, Luchinat C, Alberghina L, Lehrach H, Vanoni M, et al. A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. *BMC Med Inform Decis Mak.* 2021;21(1):274.

91. Park SH, Choi J, Byeon JS. Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence. *Korean J Radiol.* 2021;22(3):442-53.

92. Spies NC, Farnsworth CW, Wheeler S, McCudden CR. Validating, Implementing, and Monitoring Machine Learning Solutions in the Clinical Laboratory Safely and Effectively. *Clin Chem.* 2024.

93. Chouhan AS, Kaple M, Hingway S. A Brief Review of Diagnostic Techniques and Clinical Management in Chronic Kidney Disease. *Cureus.* 2023;15(11):e49030.

94. Abdulwahed BS, Al-Naji A, Al-Rayahi I, Yahya A, Perera AG. Automated computer vision system for urine color detection. *J Tech.* 2023;5(1):66-73.

95. Pellicer-Valero OJ, Marenco Jiménez JL, Gonzalez-Perez V, Casanova Ramón-Borja JL, Martín García I, Barrios Benito M, et al. Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images. *Sci Rep.* 2022;12(1):2975.

96. Blum ES, Porras AR, Biggs E, Tabrizi PR, Sussman RD, Sprague BM, et al. Early Detection of Ureteropelvic Junction Obstruction Using Signal Analysis and Machine Learning: A Dynamic Solution to a Dynamic Problem. *J Urol.* 2018;199(3):847-52.

97. Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, et al. Large language models encode clinical knowledge. *Nature.* 2023;620(7972):172-80.

98. Dal Moro F, Abate A, Lanckriet GR, Arandjelovic G, Gasparella P, Bassi P, et al. A novel approach for accurate prediction of spontaneous passage of ureteral stones: support vector machines. *Kidney Int.* 2006;69(1):157-60.

99. Parakh A, Lee H, Lee JH, Eisner BH, Sahani DV, Do S. Urinary Stone Detection on CT Images Using Deep Convolutional Neural Networks: Evaluation of Model Performance and Generalization. *Radiol Artif Intell.* 2019;1(4):e180066.

Appendix. Comprehensive MeSH Terms, Keywords and Related Variations and Search Strategies Used in Scopus Database for Urological Literature 1)

TITLE-ABS ("Computer vision") OR TITLE-ABS ("Image recognition") OR TITLE-ABS ("Artificial intelligence") OR TITLE-ABS ("Natural language processing") OR TITLE-ABS ("Natural language understanding") OR TITLE-ABS ("Natural language interpretation") OR TITLE-ABS ("Deep learning") OR TITLE-ABS ("Machine learning") OR TITLE-ABS ("Predictive analytics") OR TITLE-ABS ("Pattern recognition") OR TITLE-ABS ("Reinforcement learning") OR TITLE-ABS ("Unsupervised learning") OR TITLE-ABS ("Supervised learning") OR TITLE-ABS ("AI-driven diagnosis") OR TITLE-ABS ("AI driven diagnosis") OR TITLE-ABS ("AI-powered") OR TITLE-ABS ("AI powered") OR TITLE-ABS ("AI-assisted") OR TITLE-ABS ("AI assisted") OR TITLE-ABS ("Neural network*") OR TITLE-ABS ("Computational intelligence") OR TITLE-ABS ("Large language model*") OR TITLE-ABS ("Generative AI") OR TITLE-ABS ("Federated learning") OR TITLE-ABS ("Transfer learning") OR TITLE-ABS ("Knowledge representation") OR TITLE-ABS ("Robotic Surgery") OR TITLE-ABS ("AI-driven Robotic Process Automation") OR TITLE-ABS ("AI driven Robotic Process Automation") OR TITLE-ABS ("AI-driven RPA") OR TITLE-ABS ("AI driven RPA")

2)

TITLE-ABS (Urology) OR TITLE-ABS ("Reproductive Tract Infection*") OR TITLE-ABS ("Genital Tract Infection*") OR TITLE-ABS ("Spermatic Cord Torsion*") OR TITLE-ABS ("Testicular Torsion*") OR TITLE-ABS ("Torsion of Testicular Cord") OR TITLE-ABS (spermatocel*) OR TITLE-ABS ("Epididymal Cyst*") OR TITLE-ABS ("Testicular Disease*") OR TITLE-ABS (cryptorchidism) OR TITLE-ABS (cryptorchism) OR TITLE-ABS ("Undescended Testicle*") OR TITLE-ABS ("Bilateral Cryptorchidism") OR TITLE-ABS ("Unilateral Cryptorchidism") OR TITLE-ABS ("Abdominal Cryptorchidism") OR TITLE-ABS ("Inguinal Cryptorchidism") OR TITLE-ABS (orchitis) OR TITLE-ABS ("Testicular Hydrocele*") OR TITLE-ABS ("Scrotal Hydrocele*") OR TITLE-ABS ("Vaginal Hydrocele*") OR TITLE-ABS ("Male Genital Tuberculosis") OR TITLE-ABS ("Varicocel*") OR TITLE-ABS (globozoospermia) OR TITLE-ABS ("Penile Disease*") OR TITLE-ABS ("Penis Disease*") OR TITLE-ABS (balanitis) OR TITLE-ABS ("Balanitis Xerotica Obliterans") OR TITLE-ABS ("Kraurosis Penis") OR TITLE-ABS ("Penile Induration") OR TITLE-ABS ("Fibrous Cavernitis") OR TITLE-ABS ("Peyronie Disease") OR TITLE-ABS ("Peyronie's Disease") OR TITLE-ABS ("Peyronies Disease") OR TITLE-ABS ("Plastic Induration of the Penis") OR TITLE-ABS ("Penile Fibromatosis") OR TITLE-ABS (phimosis) OR TITLE-ABS (paraphimosis) OR TITLE-ABS (priapism) OR TITLE-ABS (priapisms) OR TITLE-ABS ("Prostatic Disease*") OR TITLE-ABS ("Prostatic Hyperplasia") OR TITLE-ABS ("Prostatic Adenoma") OR TITLE-ABS ("Prostatic Hypertrophy") OR TITLE-ABS ("Prostatic Hypertrophies") OR TITLE-ABS ("Benign Prostatic Hyperplasia") OR TITLE-ABS ("Benign Prostatic Hypertrophy") OR TITLE-ABS (prostatitis) OR TITLE-ABS ("Acute Bacterial Prostatitis") OR TITLE-ABS ("Chronic Bacterial Prostatitis") OR TITLE-ABS ("Chronic Prostatitis with Chronic Pelvic Pain Syndrome") OR TITLE-ABS ("Asymptomatic Inflammatory Prostatitis") OR TITLE-ABS ("Fournier's Gangrene") OR TITLE-ABS ("Fournier's Gangrene") OR TITLE-ABS (hematocele) OR TITLE-ABS (hematoceles) OR TITLE-ABS ("Testicular Hematocele*") OR TITLE-ABS ("Scrotal Hematocele*") OR TITLE-ABS (hemospermia) OR TITLE-ABS (hematospermia) OR TITLE-ABS ("Herpes Genitalis") OR TITLE-ABS ("Genital Herpes Simplex") OR TITLE-ABS ("Genital Herpes") OR TITLE-ABS ("Herpes Simplex Virus Genital Infection") OR TITLE-ABS ("Male Infertility") OR TITLE-ABS ("Male Sterility") OR TITLE-ABS ("Male Subfertility") OR TITLE-ABS ("Male Subfertility") OR TITLE-ABS (aspermia) OR TITLE-ABS (asthenozoospermia) OR TITLE-ABS ("Astheno Teratozoospermia") OR TITLE-ABS (asthenoteratozoospermia) OR TITLE-ABS (azoospermia) OR TITLE-ABS (oligospermia) OR TITLE-ABS ("Sertoli Cell-Only Syndrome") OR TITLE-ABS ("Sertoli Cell Only Syndrome") OR TITLE-ABS ("Germinal Cell Aplasia") OR TITLE-ABS ("Del Castillo Syndrome") OR TITLE-ABS (teratozoospermia) OR TITLE-ABS (teratospermia) OR TITLE-ABS ("Abnormal Spermatozoa") OR TITLE-ABS ("Cancer of Urinary Tract") OR TITLE-ABS ("Urinary Tract Cancer*") OR TITLE-ABS ("Urologic Cancer*") OR TITLE-ABS ("Cancer of the Urinary Tract") OR TITLE-ABS ("Urological Cancer*") OR TITLE-ABS ("Transmissible Venereal Tumor") OR TITLE-ABS ("Veterinary Venereal Tumor*") OR TITLE-ABS (dyspareunia) OR TITLE-ABS ("Ejaculatory Dysfunction*") OR TITLE-ABS ("Ejaculation Dysfunction*") OR TITLE-ABS (anejaculation) OR TITLE-ABS ("Delayed Ejaculation") OR TITLE-ABS ("Ejaculatory Incompetence") OR TITLE-ABS ("Premature Ejaculation*") OR TITLE-ABS ("Ejaculatio Praecox") OR TITLE-ABS ("Retrograde Ejaculation*") OR TITLE-ABS (epididymitis) OR TITLE-ABS ("Erectile Dysfunction") OR TITLE-ABS (impotence) OR TITLE-ABS ("Male Impotence") OR TITLE-ABS ("Male Sexual Impotence") OR TITLE-ABS ("Vasculogenic Impotence") OR TITLE-ABS ("Arteriogenic Impotence") OR TITLE-ABS ("Venogenic Impotence") OR TITLE-ABS ("Penile Venous Leakage") OR TITLE-ABS ("Fournier Gangrene") OR TITLE-ABS ("Fournier Disease") OR TITLE-ABS ("Fournier's Disease") OR TITLE-ABS ("Fournier's Disease") OR TITLE-ABS ("Androgen-Insensitive Prostatic Cancer*") OR TITLE-ABS ("Androgen-Insensitive Prostatic Cancer*") OR TITLE-ABS ("Androgen-Resistant Prostatic Cancer*") OR TITLE-ABS ("Castration-Resistant Prostatic Cancer*") OR TITLE-ABS ("Hormone Refractory Prostatic Cancer*") OR TITLE-ABS ("Androgen-Independent Prostatic Cancer*") OR TITLE-ABS ("Androgen Independent Prostatic Cancer*") OR TITLE-ABS ("Testicular Neoplasm*") OR TITLE-ABS ("Testicular Tumor*") OR TITLE-ABS ("Testis Neoplasm*") OR TITLE-ABS ("Tumor of Rete Testis") OR TITLE-ABS ("Rete Testis Tumor*") OR TITLE-ABS ("Cancer of Testis") OR TITLE-ABS ("Testicular Cancer*") OR TITLE-ABS ("Testis Cancer*") OR TITLE-ABS ("Cancer of the Testis") OR TITLE-ABS ("Sertoli-Leydig Cell Tumor*") OR TITLE-ABS ("Sertoli Leydig Cell Tumor*") OR TITLE-ABS (androblastoma) OR TITLE-ABS (androblastomas) OR TITLE-ABS (arrhenoblastoma) OR TITLE-ABS (arrhenoblastomas) OR TITLE-ABS ("Leydig Cell Tumor*") OR TITLE-ABS ("Interstitial Cell Tumor*") OR TITLE-ABS ("Sertoli Cell Tumor*") OR TITLE-ABS ("Urologic Neoplasm*") OR TITLE-ABS ("Urological Neoplasm*") OR TITLE-ABS ("Urinary Tract Neoplasm*") OR TITLE-ABS ("Genitourinary Neoplasm*") OR TITLE-ABS ("Genito-urinary Neoplasm*") OR TITLE-ABS ("Genitourinary Cancer*") OR TITLE-ABS ("Urogenital Cancer*") OR TITLE-ABS ("Genito-urinary Cancer*") OR TITLE-ABS ("Genito-urinary Cancer*") OR TITLE-ABS ("Male Genital Neoplasm*") OR TITLE-ABS ("Penile Neoplasm*") OR TITLE-ABS ("Penis Neoplasm*") OR TITLE-ABS ("Cancer of Penis") OR TITLE-ABS ("Penile Cancer*") OR TITLE-ABS ("Cancer of the Penis") OR TITLE-ABS ("Penis Cancer*") OR TITLE-ABS ("Prostatic Neoplasm*") OR TITLE-ABS ("Prostate Neoplasm*") OR TITLE-ABS ("Prostate Cancer*") OR TITLE-ABS ("Prostate Cancer*") OR TITLE-ABS ("Cancer of Prostate") OR TITLE-ABS ("Cancer of the Prostate") OR TITLE-ABS ("Prostatic Cancer*") OR TITLE-ABS ("Castration-Resistant Prostatic Neoplasm*") OR TITLE-ABS ("Androgen-Independent Prostatic Neoplasm*") OR TITLE-ABS ("Androgen Independent Prostatic Neoplasm*") OR TITLE-ABS ("Androgen-Insensitive Prostatic Neoplasm*") OR TITLE-ABS ("Androgen Resistant Prostatic Neoplasm*") OR TITLE-ABS ("Castration Resistant Prostatic Neoplasm*") OR TITLE-ABS ("Hormone Refractory Prostatic Neoplasm*") OR TITLE-ABS ("Castration-Resistant Prostatic Cancer*") OR TITLE-ABS ("Kidney Fusion*") OR TITLE-ABS ("Lobulation of Kidney") OR TITLE-ABS ("Kidney Lobulation*") OR TITLE-ABS ("Congenital Fusion of Kidneys") OR TITLE-ABS ("Congenital Lobulation of Kidneys") OR TITLE-ABS ("Renal Fusion*") OR TITLE-ABS ("Horseshoe Kidney*") OR TITLE-ABS ("Cake Kidney") OR TITLE-ABS ("Cake Kidneys") OR TITLE-ABS ("Pelvic Cake Kidney") OR TITLE-ABS ("Pelvic Cake Kidneys") OR TITLE-ABS ("Crossed Fused Ectopia") OR TITLE-ABS ("Crossed Fused Ectopias") OR TITLE-ABS ("Crossed Fused Ectopia of Kidneys") OR TITLE-ABS (hypospadias) OR TITLE-ABS (hypospadias) OR TITLE-ABS ("Retrocaval Ureter") OR TITLE-ABS ("Circumcaval Ureter") OR TITLE-ABS ("Solitary Kidney") OR TITLE-ABS ("Single Kidney")

OR TITLE-ABS ("Single Kidneys") OR TITLE-ABS ("Single Functioning Kidney") OR TITLE-ABS ("Single Functioning Kidneys") OR TITLE-ABS ("Unilateral Renal Agenesis") OR TITLE-ABS ("Solitary Functioning Kidney") OR TITLE-ABS ("Unilateral Renal Hypoplasia") OR TITLE-ABS ("Urinary Fistula") OR TITLE-ABS ("Urinary Fistulas") OR TITLE-ABS ("Urogenital Neoplasm*") OR TITLE-ABS ("Monosomy X") OR TITLE-ABS ("Ovotesticular Disorders of Sex Development") OR TITLE-ABS ("Ovotesticular DSD") OR TITLE-ABS ("Ovotesticular DSDs") OR TITLE-ABS ("Ovotesticular Disorder of Sex Development") OR TITLE-ABS ("True Hermaphroditism*") OR TITLE-ABS ("Familial True Hermaphroditism*") OR TITLE-ABS ("Familial XX True Hermaphroditism") OR TITLE-ABS ("Sex Chromosome Disorders of Sex Development") OR TITLE-ABS ("Sex Chromosome DSD") OR TITLE-ABS ("Sex Chromosome DSDs") OR TITLE-ABS ("Freemartinism") OR TITLE-ABS ("Klinefelter Syndrome*") OR TITLE-ABS ("Klinefelter's Syndrome") OR TITLE-ABS ("Klinefelters Syndrome") OR TITLE-ABS ("XXY Syndrome*") OR TITLE-ABS ("XXY Trisomy") OR TITLE-ABS ("XXY Trisomies") OR TITLE-ABS ("Xyy Syndrome*") OR TITLE-ABS ("XXX Male*") OR TITLE-ABS ("Fraser Syndrome") OR TITLE-ABS ("Cryptophthalmos-Syndactyly Syndrome*") OR TITLE-ABS ("Cryptophthalmos Syndactyly Syndrome") OR TITLE-ABS ("Cryptophthalmos with Other Malformation*") OR TITLE-ABS ("Fused Kidney") OR TITLE-ABS ("Fused Kidneys") OR TITLE-ABS ("Lobulated Kidney") OR TITLE-ABS ("Lobulated Kidneys") OR TITLE-ABS ("Fusion of Kidney"))) OR ((TITLE-ABS ("Kallmann Syndrome")) OR TITLE-ABS ("Anosmic Hypogonadism*") OR TITLE-ABS ("Anosmic Idiopathic Hypogonadotropic Hypogonadism") OR TITLE-ABS ("Dysplasia Olfactogenitalis de Morsier") OR TITLE-ABS ("Hypogonadotropic Hypogonadism and Anosmia")) OR TITLE-ABS ("Hypogonadotropic Hypogonadism-Anosmia Syndrome") OR TITLE-ABS ("Kallmann's Syndrome") OR TITLE-ABS ("Kallmann Syndrome") OR TITLE-ABS ("Kallmann Syndrome 1") OR TITLE-ABS ("Kallmann Syndrome 2") OR TITLE-ABS ("Autosomal Dominant Form of Kallmann Syndrome") OR TITLE-ABS ("Kallmann Syndrome 3") OR TITLE-ABS ("Autosomal Recessive Form of Kallmann Syndrome") OR TITLE-ABS ("Gonadal Dysgenesis") OR TITLE-ABS ("Gonadal Agenesis") OR TITLE-ABS ("gonadoblastoma") OR TITLE-ABS ("Mixed Gonadal Dysgenesis") OR TITLE-ABS ("Sexual Infantilism") OR TITLE-ABS ("Genital Infantilism") OR TITLE-ABS ("Turner Syndrome") OR TITLE-ABS ("Turner's Syndrome") OR TITLE-ABS ("Turners Syndrome") OR TITLE-ABS ("Ullrich-Turner Syndrome") OR TITLE-ABS ("Ullrich Turner Syndrome") OR TITLE-ABS ("Bonnevie-Ullrich Syndrome") OR TITLE-ABS ("Bonnevie Ullrich Syndrome") OR TITLE-ABS ("Status Bonnevie-Ullrich") OR TITLE-ABS ("Status Bonnevie Ullrich") OR TITLE-ABS ("XO Gonadal Dysgenesis") OR TITLE-ABS ("Male Pseudohermaphroditism*") OR TITLE-ABS ("Androgen-Insensitivity Syndrome*") OR TITLE-ABS ("Androgen Insensitivity Syndrome*") OR TITLE-ABS ("Androgen Resistance Syndrome*") OR TITLE-ABS ("Male Pseudohermaphroditism Due to Androgen Insensitivity") OR TITLE-ABS ("Testicular Feminization") OR TITLE-ABS ("Complete Androgen-Insensitivity Syndrome*") OR TITLE-ABS ("Testicular Feminization Syndrome*") OR TITLE-ABS ("Reifenstein Syndrome") OR TITLE-ABS ("Partial Androgen Insensitivities") OR TITLE-ABS ("Partial Androgen Insensitivity") OR TITLE-ABS ("Partial Androgen-Insensitivity Syndrome*") OR TITLE-ABS ("Partial Androgen Insensitivity Syndrome*") OR TITLE-ABS ("Reifenstein's Syndrome") OR TITLE-ABS ("Androgen Receptor Deficiency") OR TITLE-ABS ("Androgen Receptor Deficiencies") OR TITLE-ABS ("Dihydrotestosterone Receptor Deficiency") OR TITLE-ABS ("Dihydrotestosterone Receptor Deficiencies") OR TITLE-ABS ("AR Deficiency") OR TITLE-ABS ("AR Deficiencies") OR TITLE-ABS ("DHTR Deficiency") OR TITLE-ABS ("DHTR Deficiencies") OR TITLE-ABS ("Drash Syndrome") OR TITLE-ABS ("Wilms Tumor and Pseudohermaphroditism") OR TITLE-ABS ("Gonadal Dysgenesis, 46,XY") OR TITLE-ABS ("Gonadal Dysgenesis, 46, XY") OR TITLE-ABS ("Swyer Syndrome") OR TITLE-ABS ("XY Pure Gonadal Dysgenesis") OR TITLE-ABS ("Genitourinary Abnormality") OR TITLE-ABS ("Disorders of Sex Development") OR TITLE-ABS ("Sexual Development Disorder*") OR TITLE-ABS ("Sex Development Disorder**") OR TITLE-ABS ("Disorders of Sexual Development") OR TITLE-ABS ("pseudohermaphroditism") OR TITLE-ABS ("hermaphroditism") OR TITLE-ABS ("intersexuality") OR TITLE-ABS ("intersexualities") OR TITLE-ABS ("Intersex Condition*") OR TITLE-ABS ("Ambiguous Genitalia") OR TITLE-ABS ("Genital Ambiguity") OR TITLE-ABS ("Genital Ambiguities") OR TITLE-ABS ("Sex Differentiation Disorder*") OR TITLE-ABS ("Sexual Differentiation Disorder*") OR TITLE-ABS ("46, XX Disorders of Sex Development") OR TITLE-ABS ("46, XX DSD") OR TITLE-ABS ("46,XX Disorders of Sex Development") OR TITLE-ABS ("46,XX DSD") OR TITLE-ABS ("Female Pseudohermaphroditism*") OR TITLE-ABS ("46, XX Testicular Disorders of Sex Development") OR TITLE-ABS ("XX Sex Reversal*") OR TITLE-ABS ("XX Male Syndrome*") OR TITLE-ABS ("Gonadal Dysgenesis, 46,XX") OR TITLE-ABS ("hyperandrogenism") OR TITLE-ABS ("Adrenogenital Syndrome*") OR TITLE-ABS ("Congenital Adrenal Hyperplasia") OR TITLE-ABS ("Disorder of Sex Development, 46,XY") OR TITLE-ABS ("Disorder of Sex Development, 46, XY") OR TITLE-ABS ("Urinary Schistosomiasis") OR TITLE-ABS ("Urogenital Schistosomiasis") OR TITLE-ABS ("Urination Disorder*") OR TITLE-ABS ("anuria") OR TITLE-ABS ("enuresis") OR TITLE-ABS ("Diurnal Enuresis") OR TITLE-ABS ("Daytime Urinary Incontinence") OR TITLE-ABS ("Daytime Wetting") OR TITLE-ABS ("Nocturnal Enuresis") OR TITLE-ABS ("bedwetting") OR TITLE-ABS ("Nighttime Urinary Incontinence") OR TITLE-ABS ("hematuria") OR TITLE-ABS ("oliguria") OR TITLE-ABS ("Urinary Incontinence") OR TITLE-ABS ("Urinary Stress Incontinence") OR TITLE-ABS ("Urge Incontinence") OR TITLE-ABS ("Urinary Reflex Incontinence") OR TITLE-ABS ("Urinary Urge Incontinence") OR TITLE-ABS ("Urinary Retention") OR TITLE-ABS ("Urolithiasis") OR TITLE-ABS ("Urinary Lithiasis") OR TITLE-ABS ("Female Urogenital Disease*") OR TITLE-ABS ("Female Genitourinary Disease*") OR TITLE-ABS ("Urogenital Tuberculosis") OR TITLE-ABS ("Female Genital Tuberculosis") OR TITLE-ABS ("Male Genital Tuberculosis") OR TITLE-ABS ("Urogenital Abnormalities") OR TITLE-ABS ("Urogenital Abnormality") OR TITLE-ABS ("Genitourinary Abnormalities") OR TITLE-ABS ("Bladder Neurogenesis") OR TITLE-ABS ("Atonic Neurogenic Bladder") OR TITLE-ABS ("Spastic Neurogenic Bladder") OR TITLE-ABS ("Uninhibited Neurogenic Bladder") OR TITLE-ABS ("Overactive Bladder") OR TITLE-ABS ("Overactive Urinary Bladder") OR TITLE-ABS ("Overactive Detrusor") OR TITLE-ABS ("Overactive Detrusor Function") OR TITLE-ABS ("Underactive Bladder*") OR TITLE-ABS ("Underactive Urinary Bladder*") OR TITLE-ABS ("Detrusor Underactivity") OR TITLE-ABS ("Underactive Detrusor*") OR TITLE-ABS ("Underactive Detrusor Function*") OR TITLE-ABS ("Hypotonic Bladder*") OR TITLE-ABS ("Vesico-Ureteral Reflux") OR TITLE-ABS ("Vesico Ureteral Reflux") OR TITLE-ABS ("Vesicoureteral Reflux") OR TITLE-ABS ("Vesicoureteral Reflux 1") OR TITLE-ABS ("Vesicoureteral Reflux Grade1") OR TITLE-ABS ("Vesicoureteral Reflux1") OR TITLE-ABS ("Vesicoureteral Reflux1s") OR TITLE-ABS ("Primary Vesicoureteral Reflux") OR TITLE-ABS ("Secondary Vesicoureteral Reflux") OR TITLE-ABS ("Urinary Tract Infection*") OR TITLE-ABS ("bacteruria") OR TITLE-ABS ("pyuria") OR TITLE-ABS ("Schistosomiasis haematobia") OR TITLE-ABS ("Schistosoma haematobias Infection**") OR TITLE-ABS ("Schistosomiasis haematobias") OR TITLE-ABS ("Urinary Bladder Stone*") OR TITLE-ABS ("Vesical Calculi") OR TITLE-ABS ("Vesical Calculus") OR TITLE-ABS ("Urinary Bladder Fistula**") OR TITLE-ABS ("Vesical Fistula**") OR TITLE-ABS ("Vesicovaginal Fistula**") OR TITLE-ABS ("Vesico-Vaginal Fistula**") OR TITLE-ABS ("Vesico Vaginal Fistula**") OR TITLE-ABS ("Urinary Bladder Neoplasm*") OR TITLE-ABS ("Bladder Neoplasm*") OR TITLE-ABS ("Bladder Tumor*") OR TITLE-ABS ("Urinary Bladder Cancer*") OR TITLE-ABS ("Bladder Cancer*") OR TITLE-ABS ("Cancer of Bladder") OR TITLE-ABS ("Cancer of the Bladder") OR TITLE-ABS ("Malignant Tumor of Urinary Bladder") OR TITLE-ABS ("Non-Muscle Invasive Bladder Neoplasm*") OR TITLE-ABS ("Non Muscle Invasive Bladder Neoplasm*") OR TITLE-ABS ("Non-Muscle Invasive Bladder Cancer*") OR TITLE-ABS ("nmibc") OR TITLE-ABS ("Non-Muscle-Invasive Bladder Cancer*") OR TITLE-ABS ("Neurogenic Urinary Bladder") OR TITLE-ABS ("Neurogenic Bladder") OR TITLE-ABS ("Neurogenic Bladder Disorder") OR TITLE-ABS ("Neurogenic Dysfunction of the Urinary Bladder") OR TITLE-ABS ("Neuropathic Bladder") OR TITLE-ABS ("Urinary Bladder Neurogenic Dysfunction") OR TITLE-ABS ("Neurogenic Urinary Bladder Disorder") OR TITLE-ABS ("Urinary Bladder Neurogenesis") OR TITLE-ABS ("Anterior Urethral Stricture") OR TITLE-ABS ("Posterior Urethral Stricture") OR TITLE-ABS ("Urinary Bladder Neck Obstruction") OR TITLE-ABS ("Bladder Neck Obstruction") OR TITLE-ABS ("Bladder Outlet Obstruction") OR TITLE-ABS ("urethritis") OR TITLE-ABS ("Urinary Bladder Disease") OR TITLE-ABS ("Bladder Exstrophy") OR TITLE-ABS ("Bladder Exstrophies") OR TITLE-ABS ("Exstrophy of

the Bladder") OR TITLE-ABS ("Urinary Bladder Exstrophy") OR TITLE-ABS ("Urinary Bladder Exstrophies") OR TITLE-ABS ("Exstrophy of Bladder") OR TITLE-ABS ("cystitis") OR TITLE-ABS ("Hemorrhagic Cystitis") OR TITLE-ABS ("Interstitial Cystitis") OR TITLE-ABS ("Chronic Interstitial Cystitis") OR TITLE-ABS ("Painful Bladder Syndrome") OR TITLE-ABS ("Bladder Pain Syndrome**") OR TITLE-ABS ("cystocele") OR TITLE-ABS ("Fallen Urinary Bladder") OR TITLE-ABS ("Urinary Bladder Prolapse") OR TITLE-ABS ("Urinary Bladder Calculi") OR TITLE-ABS ("Urinary Bladder Calculus") OR TITLE-ABS ("Bladder Calculi") OR TITLE-ABS ("Bladder Calculus") OR TITLE-ABS ("Bladder Stone**") OR TITLE-ABS ("Calculi of Urinary Bladder") OR TITLE-ABS ("cystolith*") OR TITLE-ABS ("WAGR Complex") OR TITLE-ABS ("WAGR Contiguous Gene Syndrome") OR TITLE-ABS ("Wilms Tumor-Aniridia-Gonadoblastoma-Mental Retardation Syndrome") OR TITLE-ABS ("Renal Tuberculosis") OR TITLE-ABS ("Ureteral Disease**") OR TITLE-ABS ("Ureteral Neoplasm**") OR TITLE-ABS ("Neoplasms of Ureter") OR TITLE-ABS ("Ureter Neoplasm**") OR TITLE-ABS ("Cancer of Ureter") OR TITLE-ABS ("Ureter Cancer**") OR TITLE-ABS ("Ureteral Cancer**") OR TITLE-ABS ("Cancer of the Ureter") OR TITLE-ABS ("Ureteral Obstruction**") OR TITLE-ABS ("Ureterocele**") OR TITLE-ABS ("ureterolithiasis") OR TITLE-ABS ("Ureteral Calculi") OR TITLE-ABS ("Ureteral Calculus") OR TITLE-ABS ("Urethral Disease**") OR TITLE-ABS ("epispadias") OR TITLE-ABS ("epispadia") OR TITLE-ABS ("Urethral Neoplasm**") OR TITLE-ABS ("Urethra Neoplasm**") OR TITLE-ABS ("Cancer of Urethra") OR TITLE-ABS ("Urethra Cancer**") OR TITLE-ABS ("Urethral Cancer**") OR TITLE-ABS ("Cancer of the Urethra") OR TITLE-ABS ("Urethral Obstruction**") OR TITLE-ABS ("Urethral Stricture**") OR TITLE-ABS ("Urethral Stenosis"))) OR TITLE-ABS ("Renal Cell Adenocarcinoma**") OR TITLE-ABS ("Renal Cell Cancer**") OR TITLE-ABS ("Renal Adenocarcinoma**") OR TITLE-ABS ("Adenocarcinoma of Kidney") OR TITLE-ABS ("Hypernephroid Carcinoma**") OR TITLE-ABS ("Grawitz Tumor**") OR TITLE-ABS ("hypernephroma") OR TITLE-ABS ("Clear Cell Renal Carcinoma") OR TITLE-ABS ("Papillary Renal Cell Carcinoma") OR TITLE-ABS ("Chromophil Renal Cell Carcinoma") OR TITLE-ABS ("Chromophobe Renal Cell Carcinoma") OR TITLE-ABS ("Collecting Duct Carcinoma**") OR TITLE-ABS ("Renal Collecting Duct Carcinoma") OR TITLE-ABS ("Sarcomatoid Renal Cell Carcinoma") OR TITLE-ABS ("Mesoblastic Nephroma") OR TITLE-ABS ("Congenital Mesoblastic Nephroma**") OR TITLE-ABS ("Wilms Tumor**") OR TITLE-ABS ("nephroblastoma") OR TITLE-ABS ("Wilms' Tumor") OR TITLE-ABS ("Wilms' Tumor") OR TITLE-ABS ("Wilm Tumor") OR TITLE-ABS ("Bilateral Wilms Tumor") OR TITLE-ABS ("Denys-Drash Syndrome") OR TITLE-ABS ("Denys Drash Syndrome") OR TITLE-ABS ("WAGR Syndrome") OR TITLE-ABS ("Chromosome 11p13 Deletion Syndrome") OR TITLE-ABS ("11p Partial Monosomy Syndrome") OR TITLE-ABS ("Wilms Tumor-Aniridia-Genital Anomalies-Retardation Syndrome") OR TITLE-ABS ("Wilms Tumor-Aniridia-Genitourinary Anomalies-MR Syndrome") OR TITLE-ABS ("hydronephrosis") OR TITLE-ABS ("pyelonephritis") OR TITLE-ABS ("Necrotizing Pyelonephritis") OR TITLE-ABS ("Xanthogranulomatous Pyelonephritis") OR TITLE-ABS ("pyelocystitis") OR TITLE-ABS ("cystopyelitis") OR TITLE-ABS ("nephrocalcinosis") OR TITLE-ABS ("nephrolithiasis") OR TITLE-ABS ("Kidney Calculi") OR TITLE-ABS ("Kidney Calculus") OR TITLE-ABS ("Kidney Stone**") OR TITLE-ABS ("Renal Calculi") OR TITLE-ABS ("Renal Calculus") OR TITLE-ABS ("nephrolith") OR TITLE-ABS ("Staghorn Calculi") OR TITLE-ABS ("Staghorn Calculus") OR TITLE-ABS ("Frasier Syndrome") OR TITLE-ABS ("Renal Nutcracker Syndrome") OR TITLE-ABS ("Renal Vein Entrapment Syndrome") OR TITLE-ABS ("Renal Nutcracker Phenomenon**") OR TITLE-ABS ("Kidney Neoplasm**") OR TITLE-ABS ("Renal Neoplasm**") OR TITLE-ABS ("Cancer of Kidney") OR TITLE-ABS ("Kidney Cancer**") OR TITLE-ABS ("Renal Cancer**") OR TITLE-ABS ("Cancer of the Kidney") OR TITLE-ABS ("Renal Cell Carcinoma**") OR TITLE-ABS ("Renal Carcinoma**") OR TITLE-ABS ("Nephroid Carcinoma**") OR (TITLE-ABS ("urolog*") OR TITLE-ABS ("urogenital tract disease**") OR TITLE-ABS ("urinary tract disease**") OR TITLE-ABS ("bladder disease**") OR TITLE-ABS ("kidney disease**") OR TITLE-ABS ("obstructive uropathy**") OR TITLE-ABS ("residual urine") OR TITLE-ABS ("ureter disease**") OR TITLE-ABS ("urethra disease**") OR TITLE-ABS ("urinary dysfunction") OR TITLE-ABS ("urinary tract endometriosis") OR TITLE-ABS ("urinary tract fistula") OR TITLE-ABS ("urinary tract hemorrhage") OR TITLE-ABS ("urinary tract inflammation") OR TITLE-ABS ("urinary tract injury") OR TITLE-ABS ("urinary tract malformation") OR TITLE-ABS ("urinary tract pain") OR TITLE-ABS ("urinary tract tumor") OR TITLE-ABS ("urolithiasis") OR TITLE-ABS ("urogenital tract disease") OR TITLE-ABS ("genital system disease") OR TITLE-ABS ("pelvic floor disorder") OR TITLE-ABS ("urinary tract disease") OR TITLE-ABS ("urogenital tract infection") OR TITLE-ABS ("urogenital tract inflammation") OR TITLE-ABS ("urogenital tract injury") OR TITLE-ABS ("urogenital tract malformation") OR TITLE-ABS ("urogenital tract tumor**") OR TITLE-ABS ("urogenital ulcer**")
 3) 1 AND 2 AND (DOCTYPE(ar) OR DOCTYPE(re)) AND PUBYEAR < 2025